

25th Annual Meeting 2023 virtual session

Tuesday 28 November 2023

12.00 - 14.00

Iechyd Cyhoeddus
 Cymru
 Public Health
 Wales

Welcome

Dr Margery Morgan

CARIS Lead Clinician/Consultant Obstetrician, Singleton Hospital, Swansea

So you have the best experience possible:

- Your microphone should be muted, and your camera turned off
- There may be time for questions after each presentation.
 <u>Please post yours in the chat bar</u>
- The session will be recorded and will be available on the CARIS website after the event

- 12:00 Welcome Margery Morgan, CARIS Lead Clinician, Consultant Obstetrician
- 12:10 CARIS update Dr Penelope Cresswell-Jones, Speciality Registrar

Focus session: Abdominal Abnormalities affecting Nutrition

- 12:20 Ultrasound Diagnostic tips Armin Vandeperre, Consultant, Obstetrics & Gynaecology
- 12:50 Surgical Challenges Oliver Jackson, Consultant Neonatal & Paediatric Surgeon
- 13:15 Post operative nutrition Rebecca Seymour and Emma White, Paediatric Advanced Nurse Practitioners
- 13:40 Tracheo-oesophageal fistula (TOF) a parent's perspective – Naomi Webborn
- 13:55 Conclusion Dr Margery Morgan
- 14:00 Close

CARIS update

Dr Penelope Cresswell-Jones Speciality Registrar, Public Health Wales

CARIS Team Update

Dr Penelope Cresswell-Jones Specialty Registrar in Public Health

On behalf of Dr Llion Davies, Consultant in Public Health

Official Statistics Update: 1998-2022

- Congenital Anomalies
 - >39,000 cases registered
 - 4.8% of all births
 - 84.7% liveborn, with 96.9% surviving to 1 year
- Childhood Rare Diseases
 - >24,000 registered cases
 - >1,250 diseases
- Antenatal Detection rates

CARIS Team Achievements

- QI project (Almost) paper free
- Registries discovery
- Accessibility standards
- Office for Statistics Regulation review
- Data expansion (Syphilis and HIV)

Adult Rare Diseases

- New data officer in December 2023
- Sarcoidosis work progressing
- CARIS team part of data sub-group of the RDIG
- Co-production beginning
- Data to inform action LHB level

Focus session: Abdominal Abnormalities affecting Nutrition

lechyd Cyhoeddus Cymru Public Health Wales

Ultrasound diagnostic tips

Dr Armin Vandeperre Consultant in Obstetrics and Fetal Medicine

Abdominal Anomalies affecting Nutrition: Ultrasound diagnostic tips

Dr Armin Vandeperre Consultant in Obstetrics and Fetal Medicine University Hospitals of Wales, Cardiff

GI and abdomen

Abdominal wall

- Physiological herniation
- Gastroschisis
- Omphalocele
- Pentalogy of Cantrell
- Body Stalk Anomaly
- Bladder/cloacal exstrophy

Other

Ascites

Echogenic bowel

GI obstruction

- Esophageal atresia
- Duodenal Atresia
- Jejunal, ileal atresia
- Colonic atresia
- Anal atresia
- Cloacal malformation
- Volvulus

Cyst/Mass

- Duplication Cyst
- Pseudocyst
- Lymphangioma
- ► Gallstones
- Choledochal cyst
- ► Hemangioma
- ► Hamartoma
- Malignant tumors
- Ovarian

Physiological herniation

- Before 12 weeks
- temporary physiological midgut herniation.
- Differentiation from small Omphalocele

Physiological herniation: ultrasound

Gastroschisis

- Paramedian defect
- Almost always right sided
- Complex 12-15%:
 - Dilated bowel
 - Liver
 - Other anomalies
- Stillbirth 4-5%
- ► FGR 25%
- IABD >14mm
- No genetic association

Gastroschisis: Ultrasound

Gastroschisis: Ultrasound

Gastroschisis: pitfalls

Omphalocele

- Membrane covered
- Midline defect
- Umbilical cord inserts onto mass
- Chromosomal conditions 30-40%
- Associated anomalies:
 - GI
 - cardiac
- ► Giant >6cm

Omphalocele: ultrasound 1st Trim

Omphalocele: ultrasound 2nd Trim

Esophageal atresia Tracheoesophageal fistula

- Small or absent stomach
- > 90% fistula
- Pouch sign
- ► FGR 40%
- Polyhydramnios
- Associations:
 - Diabetes
 - VACTERL
 - $_{\circ}$ $\,$ Other anomalies >50% $\,$

EA / TOF: ultrasound

EA / TOF: ultrasound Pouch sign

Duodenal Atresia

- Partial or complete:
 - Atresia
 - o Web
 - Stenosis
 - Annular pancreas
- Double bubble
- Polyhydramnios (>24w)
- Most common place for obstruction
- ► 30% T21
- 50-70% other anomalies

Duodenal Atresia: ultrasound

Double bubble: Duodenal

Triple bubble: Jejunal

Echogenic bowel

- ▶ 0.4-2%
- Causes:
 - Normal/ blood > 80%
 - Aneuploidy
 - Infection: Parvo, CMV, Toxo
 - CF
 - FGR
 - GI:
 - Meconium peritonitis
 - Ischemia

- Ultrasound:
 - Bright as bone!
 - Focal vs diffuse
 - Probe 3.5-5 MHz
 - Low gain

No

No

Mild

Mild

Moderate - Severe

Sources:

- Diagnostic imaging Obstetrics; Third Edition
- Volk, Neil R. and Brian E. Lacy. "Anatomy and Physiology of the Small Bowel." Gastrointestinal endoscopy clinics of North America 27 1 (2017): 1-13.
- Fong, Katherine & Toi, Ants & Salem, Shia & Hornberger, Lisa & Chitayat, David & Keating, Sarah & Mcauliffe, Fionnuala & Johnson, Jo-Ann. (2004). Detection of Fetal Structural Abnormalities with US during Early Pregnancy1. Radiographics : a review publication of the Radiological Society of North America, Inc. 24. 157-74. 10.1148/rg.241035027.
- Akinmoladun, Janet & Lawal, Taiwo & Bello, Oluwasomidoyin. (2019). Pattern of prenatal ultrasound diagnosed anterior abdominal wall defects at the University College Hospital, Ibadan, Nigeria: A pictorial essay. West African Journal of Radiology. 26. 43. 10.4103/wajr.wajr_7_18.
- Letzner, J., Konetzny, G., Schraner, T., & Arlettaz, R. (2011). Duodenal web as a cause of duodenal obstruction.

CARIS Congenital Anomaly Register and Information Service

Annual Meeting 2023

Iechyd Cyhoeddus Cymru Public Health Wales CARIS
Surgical challenges

Mr Olly Jackson

Consultant Paediatric and Neonatal Surgeon

CARIS annual meeting 2023

Surgical Challenges Mr Olly Jackson, Consultant Paediatric and Neonatal Surgeon.

Aims

- To provide the best care possible to every baby and family we look after.
- Overview of conditions that we see in paeds surgery.
- Understand more about a baby's surgical journey.

- Abdominal wall defects = gastroschisis and exomphalos.
- OA/TOF (oesophageal atresia and tracheo-oesophageal fistula).
- VACTERL.
- Pyloric stenosis.
- CDH (congenital diaphragmatic hernia).

Different Types of Oesophageal Atresia and Tracheo-Oesophageal Fistula

VACTERL Association

Vertebral Anorectal

Cardiac

TracheoEsophageal (T-E) fistula/esophageal atresia Renal Limb

Summary

- To provide the best care possible to every baby and family we look after.
- Overview of gastroschisis, exomphalos, OA/TOF, Py, CDH.
- Understand more about a baby's surgical journey.

Post-operative nutrition

Rebecca Seymour & Emma White

Paediatric Advanced Nurse Practitioners

Nutritional assessment of the infant surgical patient

Erica Thomas

Paediatric Surgical Advanced Nurse Practitioner Noah's Ark Children's Hospital for Wales.

Parents questions?

• Where can I park the car?

• How long will my baby be in hospital?

Congenital malformations

- Points for consideration
 - The type of feed and the method by which it is delivered will be determined by
 - ✤ the area of GI tract affected
 - the surgery performed to correct the defect
 - the condition and function of the remaining gut

Intestinal sites of nutrient absorption

Ref: Mayer, O. and J. Kerner. (2017) Management of short bowel syndrome In postoperative very low birth weight infants. Seminars in fetal & neonatal medicine (22), 49-56.
Nutritional monitoring

Age of child	male	female
preterm	110-120	110-120
0-1 month	113	107
1-3 month	100	97
3 months – 1 year	80	80
1 -4 years	82	78

Target caloric intake (Kcal/kg/day)

- Good health requires good nutrition
- Calorific requirements in enterally fed infants
- Energy storage is limited
- Early growth deficits which reflect inadequate nutrition have long lasting effects
 - short stature
 - neurodevelopmental delay

Choice of feed

- Breastmilk is recommended when feeds first introduced
- Infants weighing <2kgs pre-term formula</p>
- Protein hydrolysate feed with 50% fat as MCT (Pepti-junior)
- Feed changes should be guided by stool/stoma output, quantity, reducing sugars

Methods of nutrition administration

- Oral
- Nasogastric tube
- Transanostomotic tube
- Gastrostomy
- Naso-jejenal feeding
- Parenteral nutrition

Enteral feeding the benefits!

- Enteral route is the preferred option as it has
 - Fewer infection rates
 - Preserves the gastrointestinal mucosa and immunity
 - Offers better metabolic control
 - Has better long term outcomes
 - Cost

• Which route of delivery?

Oral feeding

- When is a baby ready to feed?
 - Suck-swallow-breath pattern
- Cue-based feeding patterns

ref: Spagnoli (2023), NIHR (2021)

Gestation – medical intervention

Early Cues - "I'm hungry"

Stirring

Mouth opening

Turning head Seeking/rooting

- Oral anatomy micrognathia, cleft palate, Pierre Robin syndrome
- Oesophagus abnormalities
- Intestinal obstruction

Nasogastric / orogastric tube

- NG tubes are used for gastric decompression following surgery
- Gastric and oesophageal perforation 0.4-0.5% in preterms
- Stimulation of naso-oropharynx causing relaxation of oesophageal sphincter and worsening GOR
- Aspiration pneumonia
- Easy displacement of tube

When to start feeds?

- Evaluation of enteral feeding tolerance
- Includes
 - Abdominal distention, vomiting,
 - NG aspirate colour
 - Gastric aspirate volume
 - Stooling patterns and frequency

Naso-jejunal feeding

- In patients that cannot tolerate gastric feeds what next?
- Indications include significant foregut dysmotility and microgastria
 - Oesophageal atresia
 - GORD
 - Delayed gastric emptying
- Reduced the need for surgery fundoplication
- Problems encountered
 - requires continuous feeding,
 - tube displacement requires fluoroscopy to confirm placement

Upper Intestinal atresia

Transanastmotic tube

- TAT is placed at the time of surgery
- The end of the tube is placed past the anastomosis to allow early feeding
 - Oesophageal atresia
 - Duodenal atresia
- In utero duodenum proximal to the atresia is stretched resulting in a baggy segment which can delay feeding
- Can also be used as a stent for tight anastomosis OA

Abdominal wall defects

Exomphalos

Gastroschisis

Silo – staged reduction

Special requirements for feeding

80% of Gastroschisis can be closed in a single operation - *simple*

Sluggish motility of the bowel due to exposure to the amniotic fluid and prolonged pressure results in functional ileus

0

10% have associated intestinal atresia – which may not be evident until multiple failures to introduce enteral nutrition - *complex*

Ų

Liver problems related to PN

 \leftarrow

Enteral feeding is introduced when bowel function returns

Exomphalos

Prognostic factors

- Chromosomal abnormalities 32%, cardiac defects, trisomy 13 and 18.
- Beckwith-Wiedemann syndrome macroglossia and hypoglycaemia
- Size of defect
 - exomphalos minor facial defect <5cm, only intestine
 - exomphalos major fascial defect > 5cm potentially containing liver, midgut, gonads and spleen

Long term morbidity includes gastroesophageal reflux, pulmonary insufficiency and feeding difficulties.

Parenteral Nutrition

- Delivered by PIC line or central
- Parental nutrition (PN) provides nutrition to bridge the gap from placental transfer of nutrients to enteral nutrition
- First used in neonates in 1968
- Biggest influence on the increase in survival rate
- Prolonged PN usage results in significant decrease in intestinal mass, a decrease in mucosal enzyme activity, and increase in gut permeability

Short gut – the consequences

- Collection of disorders where loss of intestinal length that compromises the ability to digest and absorb nutrients
- Pre-term infants have physiological advantage small bowel doubles in length in last 15 weeks.
- Term infants
 - Length of bowel 250cm +/- 10%
 - >15cm small bowel with IC valve
 - Or
 - 40cm without intact IC valve

Intestinal sites of nutrient absorption

Factors determining the outcome of short bowel syndrome

- Length of bowel
- Quality of bowel
- Jejunum versus ileal resection
- Presence or absence of colon
- Complications- liver, sepsis, line access
- Translocation of gut bacteria due to gut stasis

Oesophageal atresia

• A life time of feeding challenges

Oeosphageal atresia and Tracheooesophageal fistula

- Feeding challenges related to the surgical option
- Primary anastomosis
- Delayed or staged repair
- Cervical oesophagostomies
 - Sham feeding
- Desensitisation to oral aversion

Oesophageal function after repair

✤Gastro-oesophageal reflux

- Incidence reported 22% to 45%
- Small stomach small volume frequent feeds
- Upright position when feeding and a following feeds
- Management includes PPI's
- Thickening agents constipation!
- Nissen fundoplication
- Eosinophilic oesophagitis
- Strictures

tofs life

lifelong support for those born unable to swallow

Feeding problems after surgical repair

- Meal times are not necessarily pleasurable
 - Chew food avoid lumps of meat and bread
 - Small frequent meals
 - Drink fluids
- Gastrostomy combination feeding

Feeding difficulties include
Dysphagia
Coughing
Choking
Aspiration – recurrent chest infections
Slow feeding
Oral food aversion

Laparoscopic Gastrostomy

Gastrostomy – button device

Gastrostomy

- Indications
- Congenital abnormalities of mouth, oesophagus, or stomach
- Swallowing dysfunction
- Medication administration metabolic conditions

- Troubleshooting
 - Leaking from stoma site
 - Delayed emptying of stomach
 - Tube displacement
 - Balloon burst
 - Granulation tissue
 - Appropriate length
 - Blockage
 - Inadequate water flush
 - Medication

AMT – Gastro-jejunal feeding tube

Table 1				
FR Size	Min Volume	Recommended Volume	Max Volume	
14 F	3 ML	4 ML	5 ML	

points i supp ന 60 \Box earni utriti

- Nutritional support requires the skills of a multidisciplinary nutrition team
- PN is essential to maintaining hydration and nutritional status
- Enteral feeds are the single most important factor in promoting adaptation and should be started early, even if trophic in nature

CARIS Congenital Anomaly Register and Information Service

Annual Meeting 2023

Iechyd Cyhoeddus Cymru Public Health Wales CARIS

Please remember to: Continue reporting cases

- By email to: Caris.Safehavenmailbox@wales.nhs.uk
- Minimum of: NHS Number, date of birth & postco/ By internet: <u>nww2.nphs.wales.nhs.uk:8080/CARISWarningCard.nsf/WarningCardForm?OpenFor</u>
- **By CARIS Cards or Data Forms** •

Visit our website for prevalence data:

https://phw.nhs.wales/services-and-teams/caris/

Dr Margery Morgan

margery.morgan@wales.nhs.uk

Dr Llion Davies Ilion.davies2@wales.nhs.uk

David Tucker:

david.tucker2@wales.nhs.uk

Email CARIS: <u>CARIS@wales.nhs.uk</u>

<u>https://phw.nhs.wales/services-and-teams/caris/</u>

lechyd Cyhoeddus Cymru Public Health Wales

Thank you for attending

Please remember to complete the short feedback form that will be dropped in the chat shortly

A certificate of attendance will be issued on request upon completion of this form

Congenital Anomaly Register and Information Service

lechyd Cyhoeddus Public Health