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There is growing demand for diagnostic services in the UK. This rapid review aimed to 
assess the effectiveness of artificial intelligence (AI) in diagnostic radiology with a focus on 
cancer diagnosis. A range of AI models including machine learning, deep learning and 
ensemble models, were assessed in this review.  
 
The review included an initial broad mapping exercise and a more in-depth synthesis of a 
specific sub-set of the evidence. The review included evidence available from 2018 until 
June 2023.  
A total of 92 comparative primary studies were included in the evidence map. The evidence 
map identified 52 studies in which the AI models were in the early stages of development 
and validation, and highlighted breast, lung and prostate cancers as the type of cancers 
most frequently reported on. 28 studies evaluating an established model and focusing on the 
diagnosis of breast, lung, and prostate cancer were included in the in-depth synthesis. All 
studies included in the in-depth synthesis were classified as diagnostic accuracy studies. 
Only one study evaluated an AI model that was commercially available in the UK. 
 
Most studies reported results in favour of the AI models, however, these improvements were 
not always statistically significant. The studies also varied considerably in terms of AI models 
studied, type of cancer, images used, and comparison made; and were limited in terms of 
their methodology. When used as a standalone diagnostic tool, there is evidence to suggest 
that AI can improve diagnostic accuracy or is comparable to experienced radiologists, 
however this may be dependent on the AI model being used. There is evidence to suggest 
that AI may be beneficial when used as a support tool for clinicians/radiologists with less 
experience. The impact of AI on the timeline involved in diagnosis appeared inconsistent. AI 
may speed up the diagnostic timeline when the level of cancer suspicion is low but may 
increase diagnostic timelines when the level of cancer suspicion is high. The evidence 
suggests that clinicians are accepting of AI-based assistance for cancer diagnosis. 
 
Policy and practice implications: The overall evidence for effectiveness appeared in 
favour of AI and several factors were identified that impact the effectiveness of the AI 
models. AI may improve diagnostic accuracy in clinicians/radiologists with less experience of 
interpreting radiological images. However, further well-designed high-quality research is 
needed from the UK and similar countries to better understand the effectiveness of AI in 
cancer diagnosis. 
 
Economic considerations: There is little evidence on the cost-effectiveness of using AI for 
cancer diagnosis. In theory, it might be possible for AI to assist with earlier diagnosis of 
cancer with both health and economic benefits.  
 
Funding statement: The Public Health Wales Observatory was funded for this work by the 
Health and Care Research Wales Evidence Centre, itself funded by Health and Care 
Research Wales on behalf of Welsh Government. 
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A rapid review exploring the effectiveness of artificial intelligence for 

cancer diagnosis 
 

EXECUTIVE SUMMARY 
 

 
What is a Rapid Review?  
Our rapid reviews (RR) use a variation of the systematic review approach, abbreviating or omitting 
some components to generate the evidence to inform stakeholders promptly whilst maintaining 
attention to bias.  
 
Who is this Rapid Review for?  
The review question was suggested by the Health Sciences Directorate (Policy). 
 
Background / Aim of Rapid Review 
There is growing demand for diagnostic services in the UK. The use of artificial intelligence in 
diagnosis is part of the Welsh Government’s programme for transforming and modernising planned 
care and reducing waiting lists in Wales. This rapid review aimed to assess the effectiveness of 
artificial intelligence (AI) in diagnostic radiology with a focus on cancer diagnosis. A range of AI models 
including machine learning, deep learning and ensemble models, were assessed in this review. The 
term ‘AI models’ was therefore used to encompass these different types of AI models described in the 
literature. The review included an initial broad mapping exercise and a more in-depth synthesis of a 
specific sub-set of the evidence. The focus of the in-depth synthesis was informed by the review’s 
stakeholders based on the findings of the mapping exercise. 
 
Results 
Recency of the evidence base 

§ The review included evidence available from 2018 until June 2023.  
 

Extent of the evidence base 
§ A total of 92 comparative primary studies were included in the evidence map.  
§ The evidence map identified 52 studies in which the AI models were in the early stages of 

development and validation, and highlighted breast, lung and prostate cancers as the type of 
cancers most frequently reported on. 

§ 28 studies evaluating an established model and focusing on the diagnosis of breast 
(n=14), lung (n=7) and prostate (n=7) cancer were included in the in-depth synthesis.  

§ Studies included in the in-depth synthesis were conducted in the USA (n=8), Japan (n=5), UK 
(n=2), Italy (n=2), Turkey (n=2), Germany (n=2), Netherlands (n=2), Portugal (n=1), Greece 
(n=1) and Norway (n=1). Two studies were conducted across multiple countries. 

§ All studies included in the in-depth synthesis were classified as diagnostic accuracy studies. 
§ Only one study evaluated an AI model that was commercially available in the UK. 
§ A total of 14 studies compared AI models to human readers or to other diagnostic methods 

used in practice, 13 studies compared the impact of AI on human interpretation of radiologic 
images when diagnosing cancer, four studies compared multiple AI models, and one study 
compared an inexperienced AI-assisted reader with an experienced reader without AI. 

§ Five studies reported on the impact of AI on diagnostic timelines (time to diagnosis, 
assessment time, evaluation times, and reading time). 
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§ Four studies also reported on the impact of AI on inter/intra-reader variability, reliability, 
and agreement. 

§ One study reported on clinicians’ acceptance and receptiveness of the use of AI for cancer 
diagnosis. 

 
Key findings and certainty of the evidence  

§ Most studies reported results in favour of the AI models, however, these improvements were 
not always statistically significant. The studies also varied considerably in terms of AI models 
studied, type of cancer, images used, and comparison made; and were limited in terms of their 
methodology (unclear level of certainty).  

§ When used as a standalone diagnostic tool, there is evidence to suggest that AI can improve 
diagnostic accuracy or is comparable to experienced radiologists, however this may be 
dependent on the AI model being used (unclear level of certainty). 

§ There is evidence to suggest that AI may be beneficial when used as a support tool for 
clinicians/radiologists with less experience (unclear level of certainty). 

§ The impact of AI on the timeline involved in diagnosis appeared inconsistent. AI may speed up 
the diagnostic timeline when the level of cancer suspicion is low but may increase diagnostic 
timelines when the level of cancer suspicion is high (low level of certainty). 

§ The evidence suggests that clinicians are accepting of AI-based assistance for cancer 
diagnosis (low level of certainty).  

 
Research Implications and Evidence Gaps 

§ No study reported on any patient outcomes, including patient harms. 
§ No study reported on any economic outcomes. 
§ No study reported on equity outcomes, including equity of access. 
§ Further research in a real-world setting is needed to better understand the cost implications 

and impact on patient safety of AI for cancer diagnosis. 
 
Policy and Practice Implications  

§ The overall evidence for effectiveness appeared in favour of AI and several factors were 
identified that impact the effectiveness of the AI models. 

§ AI may improve diagnostic accuracy in clinicians/radiologists with less experience of 
interpreting radiological images. 

§ AI models are continually being developed and updated and findings are likely to vary between 
different AI models. 

§ Further well-designed high-quality research is needed from the UK and similar countries to 
better understand the effectiveness of AI in cancer diagnosis. 

 
Economic considerations  

§ In theory it might be possible for AI to assist with earlier diagnosis of cancer with both health 
and economic benefits.  

§ There is little evidence on the cost-effectiveness of using AI for cancer diagnosis. One 
modelling paper from the United States (US) suggests using AI in lung cancer screening using 
low-dose computerised tomography (CT) scans can be cost-effective, up to a cost of $1,240 
per patient screened. 

§ The UK (and its constituent countries) perform consistently poorly against European and 
international comparators in terms of cancer survival rates. Cancer screening was suspended 
and routine diagnostic work deferred in the UK during the COVID-19 pandemic. 

§ The cost of cancer to the UK economy in 2019 was estimated to be least £1.4 billion a year in 
lost wages and benefits alone. When widening the perspective to include mortality, this figure 
rises to £7.6 billion a year. Pro-rating both figures to the Welsh economy and adjusting for 
inflation gives figures of £79 million and £429 million per annum respectively. 
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Abbreviations 
 
Acronym Full Description 
AI Artificial intelligence 
AIS Artificially Intelligent Systems  
AUC Area Under The Curve 
BI-RADS Breast Imaging Reporting and Data System 
bpMRI Biparametric Magnetic Resonance Imaging 
BPN Back Propagation Neural Networks 
CAD Computer Aided Diagnosis 
CANARY Computer-Aided Nodule Assessment and Risk Yield 
CBCT Cone-beam Computed Tomography 
CE The Conformité Européene 
CI Confidence Interval 
CL-bpMRI Conventional Biparametric Magnetic Resonance Imaging 
CNN Convolutional Neural Network 
CQC Care Quality Commission 
CsPCa Clinically significant prostate cancer 
CT Computed Tomography 
DBT Digital Breast Tomosynthesis 
DCE MRI Dynamic Contrast Material–Enhanced Magnetic Resonance Imaging 
DCNN Deep Convolutional Neural Network 
DL Deep learning 
DLCAD Deep Learning Computer Aided Diagnosis Software 
DLCNN Deep Learning Convolutional Neural Network 

DL-bpMRI Deep Learning-Accelerated Biparametric Magnetic Resonance 
Imaging 

DNN Deep Neural Network 
DRE Digital Rectal Examination 
FDA The United States Food and Drug Administration 
GAN Generative Adversarial Networks 
kNN k-Nearest Neighbour 
LCP-CNN Lung Cancer Prediction Convolutional Neural Network 
ML  Machine Learning 
MRI Magnetic Resonance Imaging 
mpMRI Multiparametric Magnetic Resonance Imaging 
mRMR Minimum Redundancy Maximum Relevance 
NHS National Health Service 
NICE The National Institute for Health and Care Excellence 
NPV Negative Predictive Value 
PCa Prostate cancer 
PI-QUAL Prostate Imaging Quality 
PI-RADS Prostate Imaging Reporting & Data System 
PPV Positive Predictive Value 
PSA Prostate-Specific Antigen 
ROC Receiver Operating Characteristics 
ROC AUC Area Under The Receiver Operating Characteristic curve 
ROI Region of Interest 
RR Rapid Review 
SD Standard Deviation 
SVM Support Vector Machine 
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1. BACKGROUND 

1.1 Who is this review for? 
This Rapid Review was conducted as part of the Health and Care Research Wales Evidence 
Centre Work Programme. The above question was suggested by the Health Sciences 
Directorate (Policy). 
 
1.2 Background and purpose of this review 
 
There has been a growing demand across multiple aspects of diagnostic services in the UK. 
This has impacted on waiting times for both diagnostics and treatment. Data from March 2023 
showed that over 116,000 patients were waiting eight weeks or more for diagnostic services, 
of which approximately 68,000 were waiting specifically for radiology tests (Stats Wales, 
2023). As part of the ‘Programme for transforming and modernising planned care and reducing 
waiting lists in Wales’, the Welsh Government recommended the use of Artificial Intelligence 
(AI) technologies to help transform diagnostic services and reduce waiting lists (Welsh 
Government, 2022). A range of techniques can be used to create Artificially Intelligent 
Systems (AIS) that are capable of carrying out health and care tasks that until now have only 
been able to be completed by humans (NHS, 2022). For the purposes of this rapid review, the 
term ‘AI model’ will encorporate any computer algorithm described within the literature that is 
programmed to detect cancer from a range of radiologic images. 
 
The NHS Artificial Intelligence Laboratory (NHS AI lab) aims to incorporate AI into the health 
and care sector, with the goal of reducing waiting times, improving diagnosis and saving 
healthcare professionals’ time (NHS England, 2022). To support this the ‘AI in Health and 
Care Award’ was created (Department of Health and Social Care, 2021). Over three rounds 
of funding, the NHS AI lab have invested £123m in 86 AI technologies, including some which 
process images to detect cancers allowing for faster, more accurate diagnosis (Department of 
Health and Social Care, 2023).  
 
With growing investment in the use of AI in diagnostic radiology, and the rapid rate of 
development of AI models available that could potentially be utilised by the NHS in Wales, it 
is important to determine if AI is effective. The puropse of this rapid review is to assess the 
effectiveness of AI in diagnostic radiology with a focus on cancer diagnosis. Stakeholders 
were interested in the following sub-questions (listed in order of priority): 
 

- Is there any documented harm from use of the AI models /applications /approaches 
in radiology for cancer diagnosis? 

- To what extent does the use of AI models /applications /approaches in radiology for 
cancer diagnosis improve patient outcomes? 

- Are the AI models /applications /approaches effective in diagnosing cancer in a 
real-world setting? 

- Is there evidence of the adoption of AI models /applications /approaches in 
diagnosing cancer within the UK? 

- Are the AI models /applications /approaches described in the primary literature, 
licensed for use in the UK? 

- To what extent do the AI models /applications /approaches used in radiology for the 
diagnosis of cancer reduce time for completion of diagnostic testing, review, 
reporting within a given clinical workflow? 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.11.09.23298257doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.09.23298257
http://creativecommons.org/licenses/by-nd/4.0/


 

RR0008_Artificial intelligence in cancer diagnosis_November 2023 11 

- Does the evidence suggest the AI models /applications /approaches used in 
radiology for the diagnosis of cancer are able to be replicated in Wales? 

- What is the cost-effectiveness of the AI models /applications /approaches used in 
radiology for the diagnosis of cancer? 

- To what extent do the use of AI models /applications /approaches in radiology for 
cancer diagnosis reduce overall clinician time, reduce need for follow up, and 
reduce need for further intervention? 

- What are the perceptions of clinicians with the AI models /applications 
/approaches used in radiology for the diagnosis of cancer?  

 
This rapid review was conducted in two parts. Firstly, a broad mapping exercise of the 
existing literature on the use of AI in cancer diagnostics was conducted in order to identify 
and classify the available evidence. Secondly, the findings of this mapping exercise were 
then used to identify a focus for an in-depth synthesis of the evidence relating to the 
effectiveness of AI in breast, lung and prostate cancer diagnosis. 

2. Mapping the wider evidence base  

Our literature searches identified 21,403 records. This was narrowed to a total of 92 
published comparative primary studies included in the mapping exercise and 21 ongoing 
trials. The mapping exercise sought to outline the outcome measures reported in the 
literature pertaining to cancer diagnostic radiology and provide details on the types of AI 
models assessed and the datasets utilised in the evidence base. The eligibility criteria used 
to select studies for the mapping exercise are outlined in Section 6.1. A reference list of all 
the studies included in the map can be found in appendix 1. A list containing the titles and 
weblinks of the 21 ongoing trials identified can be found in appendix 2. 
 
As outlined in the evidence map presented in Table 1, 40 studies focussed on the diagnosis 
of breast cancer, 14 on lung cancer, 12 on prostate cancer, while 26 focussed on a range of 
other cancers (including gynaecological n=7, renal n=4, brain n=2, bone n=2, liposarcoma 
n=2, pancreatic n=1, salivary gland n=1, thyroid n=1, liver n=1, colon n=1, bowel n=1, 
peripheral nerve sheath n=1, soft tissue n=1, oesophageal n=1). Only diagnostic accuracy 
outcome measures were consistently reported across all included studies. Some studies 
reported ‘other’ outcomes as can be seen in the map. These included: clinician perceptions, 
image quality, and the impact of different manufacturers on the ability of AI to read the 
images. The number of images used to test the various AI models varied greatly, but 
generally ranged from between 101 to 500 images. The AI models identified also varied 
considerably. Studies were categorised in the map by those that were reporting on 
commercially available AI models (as stated by the publication’s study authors), those that 
evaluated models that had been developed previously for use in other research work, and 
those that included the development and validation of new models. The evidence map also 
sought to differentiate between studies that compered AI models with human reader 
comparators, and those that made comparisons between different AI models.  
 
The evidence map was presented to stakeholders in order to aid their selection of a 
substantive focus for a more in-depth review of the research, given the short time frame 
allocated for completion of this review. 
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Table 1. Map showing the outcome measures, stage of development of AI model and size of the overall datasets used of the evidence base (n=92). 
 
Key: 

Breast 
Total number of studies that have a human 
comparator (number of studies that have a non-
human comparator) 

Prostate 
Total number of studies that have a human 
comparator (number of studies that have a non-
human comparator) 

Lung 
Total number of studies that have a human 
comparator (number of studies that have a non-
human comparator) 
 

Other 
Total number of studies that have a human 
comparator (number of studies that have a non-
human comparator) 

 
 
 

 
 
 

Commercially 
available AI 
model 

Outcomes 
Images 

Safety/harm 
outcomes 

Patient care 
outcomes 

Performance 
outcomes 

Diagnostic 
accuracy 
outcomes 

Economic 
outcomes 
 

Equity 
 

Other  

Over 1000                
              

501-1000               
      1        

101-500      1 3 3       
    1  2        

0- 100               
              

Total      1 3 3       
    1  3        

Previously 
developed AI 
model 

Outcomes 
Images 

Safety/harm 
outcomes 

Patient care 
outcomes 

Performance 
outcomes 

Diagnostic 
accuracy 
outcomes 

Economic 
outcomes 
 

 Equity 
 
 

 Other 

Over 1000     1  2(1) (1)     1  
      (1) 3       

501-1000       1        
              

101-500     2 1 6(1) 3     1 1 
      2(1) 5(2)      1 

0- 100       2        
      (1) 4(2)       

Total     3 1 11(2) 4(1)     2 1 
      4(2) 12(4)      1 

AI model 
developed for 
the study 

Outcomes 
Images 

Safety/harm 
outcomes 

Patient care 
outcomes 

Performance 
outcomes 

Diagnostic 
accuracy 
outcomes 

Economic 
outcomes 
 

 Equity 
 
 

Other 

Over 1000       8(1) 2       
      (2) 1       

501-1000     2(1)  6(3)        
      3(2) 3       

101-500       10(2) 3(1)     1  
     (1) 2(1) 6(1)      (1) 

0- 100       2(1)        
       4       

Total     2(1)  26(7) 5(1)     1  
     (1) 7(5) 14(1)      (1) 

Total 
 

    5(1) 2 40(9) 12(2)     3 1 
    1 (1) 14(8) 26(5)      2(1) 
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3. Results of the in-depth synthesis  

3.1 Overview of the evidence base 
 
As part of the prioritisation process, stakeholders agreed that the in-depth evidence 
synthesis should focus on previously developed or commercially available AI models1 (see 
Table 2). Similarly, a focus on breast, lung and prostate cancers was agreed, as these were 
the most prevalent cancers in Wales requiring urgent action. The detailed eligibility criteria 
used for selecting studies for the in-depth synthesis is presented in Section 6.2 and a full 
summary of the included studies can be seen in Section 7.2.  
 
The in-depth synthesis included a total of 28 studies (breast cancer n=14, prostate cancer 
n=7 and lung cancer n=7). Included studies were conducted in a range of countries including 
USA (n=8), Japan (n=5), UK (n=2), Italy (n=2), Turkey (n=2), Germany (n=2), Netherlands 
(n=2), Portugal (n=1), Greece (n=1), and Norway (n=1). Two studies were conducted across 
multiple countries. Study designs were poorly reported across all 28 studies; however, the 
majority were retrospective in nature (n = 25), and most were observational. Fourteen 
studies explored the effectiveness of AI as an alternative method to radiologists or other 
conventional methods for cancer diagnosis (two of which were prospective). Thirteen studies 
explored the impact of AI on human interpretation of radiological images for cancer 
diagnosis, one of which was prospective (a total of four studies explored the effectiveness of 
AI as an alternative method and when assisting human interpretation). Four studies 
compared multiple AI models to determine the most effective models for diagnosing cancer 
and one study compared an inexperienced AI-assisted reader with an experienced reader 
without AI. All studies examined the diagnostic accuracy of AI models. Seven studies (two of 
which were prospective) investigated the effectiveness of commercially available AI tools 
while 21 studies (one of which was prospective) investigated the effectiveness of a 
previously developed tool.  
 
The majority of studies relied on either existing databases of patients or datasets of images 
for evaluating the effectiveness of AI. Participants/images were selected from institutional 
databases (n=17), multiple sources (n=6), open-source datasets (n=4) and from previous 
studies (n=1). Most often institutional datasets were utilised for breast cancer and prostate 
cancer studies. The datasets used did not always originate from the country in which the 
study was conducted (See appendix 3). Usually, most participants or images used were 
those that had been flagged as having abnormal images or were confirmed as having 
lesions or nodules identified previously by a gold standard (often biopsy). However, the 
information on study population was often poorly reported, and as such it was not always 
clear how included patients or images were selected into the included studies. 
 
The retrospective studies generally obtained images from historic datasets that are publicly 
available. The three studies that self-identified as prospective investigated the use of AI in 
the diagnosis of breast cancer (O’Connell et al, 2022 and Uhlig et al, 2018) and prostate 
cancer (Forookhi et al, 2023). The two breast cancer studies identified their populations from 
patients who were found to have abnormalities initially identified from ultrasound or 
mammography during screening or from a prior study (O’Connell et al, 2022 and Uhlig et al, 
2018), the final diagnosis was already known at the time of the study, as this was used as 
the reference standard. However, the prostate cancer study was a truly prospective study as 

 
 
1 For the purposes of this review, an AI model was classed as commercially available if it was stated as such in the primary study. 
An AI model was classed as previously developed if it was stated as such in the primary study or if it was made clear that the 
model had not been developed for use in the study. 
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consecutive patients were prospectively enrolled from a cohort undergoing MRI examination 
for clinical suspicion of prostate cancer due to either an increase from baseline prostate-
specific antigen (PSA) levels or positive digital rectal examination (DRE) findings. This study 
used an expert radiologist as the reference standard. Population numbers in the prospective 
studies tended to be small, between 35 and 299 participants and between 80 and 299 
images. It should be noted that participants had already begun the diagnostic pathway and it 
was the initial images that were utilised in these prospective studies. Also, important to note 
is that study authors excluded patients on active surveillance (Forookhi et al, 2023), those 
with a prior diagnosis (Forookhi et al, 2023 and O’Connell et al, 2022) and in one study 
those who were unable to read or understand English (O’Connell et al, 2022), or those 
participating in a breast screening program (Uhlig et al, 2018).  
 
Patient characteristics generally included clinical and pathological rather than demographic 
information. Those that did report demographic characteristics (n=23), age was the most 
commonly reported. This was reported in all prostate cancer studies. Six of the seven lung 
cancer studies also reported sex. All, but one breast cancer study (O’Connell et al, 2022) 
were conducted in women only. The majority of breast cancer studies included participants 
with lesions, although these could be normal, benign or malignant in nature. One of these 
(van Zelst et al, 2020) included only women with dense breasts and one study (Pacilè et al, 
2020) included women with no clinical symptoms. In addition, one study (Uhlig et al, 2018) 
identified participants who were pre- and post-menopausal. Lastly, one breast cancer study 
(Lo Gullo et al, 2020) included only BRCA 1 or BRCA 2 mutation carriers. Two studies 
(O’Connell et al, 2022 and Maldonado et al, 2021) included ethnicity, of which Caucasians 
predominated. Only one lung cancer study (Maldonado et al, 2021) reported participant 
smoking status. Generally, participants with a prior history of or those under active 
surveillance or treatment for the specific cancer of interest were excluded from studies. 
 
The included studies utilised a range of diagnostic imaging techniques including MRI (n=12), 
CT scans (n=6), ultrasound (n=4), X-rays (n=2), mammograms (n=2), and digital breast 
tomosynthesis (DBT)(n=1). One study included a combination of mammograms, ultrasound 
and MRI. Outcome measures reported included: the impact of AI on diagnostic accuracy, 
inter/intra-variability/agreement, time to diagnosis, assessment time, evaluation time, reading 
time, and clinicians’ acceptance and receptiveness of the use of AI for cancer diagnosis.  
 
The type of AI models used within the studies were not always clearly described. The 
studies included deep learning (DL) models (n=16), machine learning (ML) models (n=5), ‘AI 
software’ n=2, ensemble learning models (n=1), Generative Adversarial Networks (GAN) 
(n=1), convolutional neural networks (CNN) (n=1), Computer aided diagnosis software 
(CAD) (n=1), and Computer-Aided Nodule Assessment and Risk Yield (CANARY) (n=1). 
Within the studies using a DL model, nine were reported to be deep learning convolutional 
neural networks (DLCNNs), three were deep learning computer aided diagnosis software 
(DLCADs) and four were just described as DL models).  
 
The AI models evaluated in the included studies were at different stages of development. 
Seven studies explored the use of commercially available AI models. It should be noted that 
the commercially available models were licenced for use in different countries, however, this 
was not always clearly stated in the studies. Only one AI model was commercially available 
within the UK (Red Dot, Behold.ai). The remaining 21 studies explored the use of previously 
developed AI models. The majority of AI models that were included in this in-depth synthesis 
were specifically named as shown in Table 2. However, some AI models were only given 
descriptors rather than a specific name, with the descriptors outlining details about the type 
of AI model used (e.g. radiomics, prediction CNN, CAD system). Full details about the AI 
models used in each study can be seen in section 7.2. 
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Table 2. Name or descriptor of the artificial intelligence (AI) models utilised in the 
included studies 

Commercially available AI models  Previously developed AI models 
Quantib® - AI software BreastScreening-AI –DNN 
The Koios DS – DL Xception – DLCNN 
Prostate AI, Version Syngo.Via VB60,  InceptionV3, Inception, -DLCNN 
Prostate AI, version 1.3.2, - DLCAD DenseNet121, DenseNet161, - DLCNN 
EIRL Chest X-ray Lung nodule (LPIXEL Inc) – 
CAD 

NASNetMobile – DLCNN 

QVCAD Qview Medical Inc,   ResNetV2, ResNet50, ResNet101, ResNet 152, 
- CNN 

Red Dot, Behold.ai, -DNN QuantX – CAD 
 Koios DS – DL 
 S-Detect – CNN 
 MammoScreen V1 – DCNN 
 Transpara. version 1.6.0 – CAD 
 AlexNet, - DCNN 
 VGG, VGG-16 – DCNN 
 LeNet DCNN 
 GoogLeNet/Inception, - CNN 
 Residual Networks (ResNets) – DL 
 AdaBoost, GBoost, XGBoost, LightGBM – 

Ensemble model 
 f-AnoGAN, HealhtyGAN, StarGAN, StarGAN-

v2, FP-GAN, DeScarGAN - GAN 
 Grt123 – DL 
 JWDH- DL 
 Aidence – DL 
 CANARY* 
 Radiomics + Machine learning model* - ML 
 Random forests, back propagation neural 

networks (BPN), extreme learning machines, 
support vector machines, and K-nearest 
neighbors* - ML 

 Convolutional neural network (CNN)* 
 Lung Cancer Prediction CNN (LCP-CNN)* 
 CAD system* 

* Only the description of type of AI model used provided 
 
 
The methodological quality of included studies was assessed using the QUADAS-2 (Whiting 
et al, 2011) and QUADAS-C (Yang et al, 2021) tools. Quality appraisal identified three 
studies to be at low risk of bias (Lo Gullo et al, 2020, Maldonado et al, 2021, Tong et al, 
2023), while the remaining studies had methodological limitations and were therefore judged 
to be at high or unclear risk of bias. Common methodological limitations across studies 
included poor reporting of patient/image selection. Studies also often failed to adequately 
describe how images were distributed among the intervention and control groups. In 
addition, several studies excluded images that were considered of poor quality or images 
containing several or complex lesions which could have limited the generalisability of the 
findings. Two of the three prospective studies were determined to have an unclear risk of 
bias due to missing details around how the comparators were conducted (Uhlig et al 2018, 
and Forookhi et al 2023) and one was determined to have a high risk of bias due to some 
participants being removed from the analysis (O’Connell et al 2022). 
 
A clear description of how the index test was conducted and interpreted was lacking among 
some studies. Many studies utilised the diagnosis reported in the database from where the 
images were taken as the final diagnosis. Other studies did interpret images independently, 
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or in the case of images collected at local hospitals, used the final diagnosis as the reference 
standard. However, in the case of AI being compared against human readers, the timing of 
the index test and reference standard was unclear, which could have introduced bias. 
Further details of the quality appraisal can be found in section 7.3. 
 
3.2 Impact of AI on diagnostic accuracy  
 
All studies reported on the impact of AI on diagnostic accuracy, the findings of which are 
summarised in Table 3. 
 
When assessing the diagnostic accuracy of a test, multiple measurements can be reported, 
which include but are not limited to: sensitivity and specificity, positive and negative 
predictive values (PPV, NPV), and the area under the receiver operating characteristic curve 
(ROC AUC, often reported as AUC) (Šimundić 2009). The sensitivity of a diagnostic test 
measures the proportion of true positives identified by the test, whereas the specificity of a 
diagnostic test represents the proportion of true negatives identified (Wong and Lim 2011). 
PPV represents the likelihood that a patient with a positive test actually has the disease and 
the NPV represents the likelihood that a patient with a negative test does not have the 
disease (Safari et al 2015). The AUC represents how well the diagnostic test can 
discriminate, in this case between cancer and non-cancer, an AUC of 1 would be a perfect 
diagnostic test whereas a non-discriminative test would give an AUC of 0.5 (Eusebi 2013).  
 
The results for diagnostic accuracy are grouped according to the comparisons made into the 
following categories: 

•  AI compared to human readers/usual methods  
•  AI assisting human interpretation  
• Comparison of different AI models  

(individual studies may have multiple aims and are therefore reported under more than one 
category).  
 
As the AI models, comparators and datasets varied widely across studies, each study has 
been narratively reported separately. It was not always appropriate to combine findings. 
Where this has been done, it should be highlighted that the studies may have used different 
imaging techniques for the diagnosis of different types of cancer. 
 
Effectiveness of AI compared to human readers/conventional methods 
 
A total of 14 studies assessed the effectiveness of AI models in detecting cancer compared 
to human readers (radiologists/clinicians) or other conventional diagnostic methods (e.g., the 
Brock model, a lung cancer probability calculator). The findings were inconsistent.  
 
Four studies (breast n=2, lung n=2) found evidence that the use of AI may improve cancer 
diagnosis (Uhlig et al, 2018, Lo Gullo et al, 2020, Baldwin et al, 2020, Maldonado et al, 
2021). Three studies used CT images and one study used MRI scans. 
 
Uhlig et al (2018) compared the diagnostic performance of five machine learning techniques 
(random forests, back propagation neural networks [BPNs], extreme learning machines, 
support vector machines, and K-nearest neighbours) with that of two independent human 
readers (radiologists) for the diagnosis of breast cancer from Cone-beam Computed 
Tomography (CBCT) images. BPNs were found to be the highest performing model and also 
performed better than the human readers (0.91 AUC, 0.85 sensitivity, 0.82 specificity for 
the BPNs vs 0.72 to 0.84 AUC, 0.71 to 0.89 sensitivity, 0.67 to 0.72 specificity for human 
readers). The AUC was statistically significantly higher for BPNs when compared with 
both human reader 1 (p = 0.01) and human reader 2 (p < 0.001).  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.11.09.23298257doi: medRxiv preprint 

https://pubmed.ncbi.nlm.nih.gov/?term=%C5%A0imundi%C4%87%20AM%5BAuthor%5D
https://doi.org/10.1101/2023.11.09.23298257
http://creativecommons.org/licenses/by-nd/4.0/


 

RR0008_Artificial intelligence in cancer diagnosis_November 2023 17 

 
Lo Gullo et al (2020) investigated the diagnostic accuracy of radiomic analysis and ML in 
differentiating between benign and malignant breast lesions from MRIs compared to 
independent assessments by two human readers (radiologists). The findings showed an 
improved diagnostic performance by the machine learning model compared to the 
radiologists (diagnostic accuracy 81.5% vs 53.4%, sensitivity 63.2% vs 75%, specificity 
91.4% vs 42.1%, PPV 80% vs 40.5%, NPV 82.1% vs 76.2%; respectively). 
 
Baldwin et al (2020) compared the effectiveness of an AI model (LCP-CNN) to the Brock 
model for the diagnosis of lung cancer from CT scans. This study found that the AI model 
was statistically significantly better at predicting the risk of malignancy compared to 
the Brock model. The AUC for the AI model was 89.6% (95% CI: 87.6% to 1.5%), 
compared with 86.8% (95% CI: 84.3% to 89.1%) for the Brock model (p≤ 0.005).  
 
Maldonado et al (2021) assessed the effectiveness of the BRODERS radiomic predictive 
model in predicting the probability of malignancy in an independent dataset of incidentally 
detected indeterminate pulmonary nodules by comparing its performance to that of the Brock 
model on CT scans. The findings showed a significantly greater AUC for the BRODERS 
model compared to the Brock model at all pre-test malignancy probabilities 0.90 (95% 
CI:0.85% to 0.94%) vs 0.87 (95% CI:0.81% to 0.92%) (p<0.001).  
 
Eight studies (breast n=3, lung n=2, and prostate n=3) found evidence to suggest the use of 
AI led to no significant difference between groups or reported similar outcomes when 
compared to human readers (Fujioka et al, 2021, O’Connell et al, 2022, Goto et al, 2023, 
Tam et al, 2021, Jacobs et al, 2021, Akatsuka et al, 2019, Arslan et al, 2023, Zhang et al, 
2022). However, two of these studies found that the level of experience of radiologists 
impacted whether the use of AI improved accuracy of diagnosis (O’Connell et al, 2022, Goto 
et al, 2023). These studies used CT (n= 1), MRI (n= 5) and ultrasound (n= 1) and X-rays 
(n=1). 
 
Fujioka et al (2021) evaluated the effectiveness of six CNN models in discriminating between 
benign and malignant breast lesions on MRI by comparing their performance with that of two 
human readers (a breast surgeon and a radiologist). The findings showed no significant 
differences between the CNN models (DenseNet121, DenseNet169, InceptionResNetV2, 
InceptionV3, NasNetMobile, and Xception) and the human readers. The mean AUC of all 
AI models was 0.83 (range 0.75 to 0.90). The best performing AI model was 
InceptionResNetV2, however no statistically significant differences were reported when 
compared with the two human readers (AUC 0.90 vs 0.82, and 0.85; sensitivity 74.5% vs 
72.3%, and 78.7%; and specificities of 96.0%, 88.0%, and 80.0%, respectively [p > 0.125]).  
 
O’Connell et al (2022) studied the performance of an AI model (S-Detect™) in the diagnosis 
of breast cancer in ultrasound images by comparing this model to manual readings by 10 
human readers (radiologists) with varying levels of experience. The AI model was found to 
have similar levels of accuracy, sensitivity and specificity compared to the 
experienced radiologists (accuracy 0.82 vs 0.72, sensitivity 0.81 vs 0.79, specificity 0.83 
vs 0.67, respectively).  
 
Goto et al (2023) compared an AI model (ResNet50) to three human readers (radiologists 
with varying levels of experience) when determining malignancy from breast MRI. When 
precise segmentation was conducted the AI model achieved similar levels of accuracy 
compared to a highly experienced radiologist (AUC =0.91, 95% CI:0.90% to 0.93% vs 
AUC =0.89, 95% CI:0.81% to 0.96%; p=0.45, respectively). When rough segmentation was 
conducted, the AI model showed similar levels of accuracy to a board-certified radiologist 
(AUC 0.80, 95% CI:0.78% to 0.82% vs. AUC 0.79, 95% CI:0.70% to 0.89%, respectively). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.11.09.23298257doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.09.23298257
http://creativecommons.org/licenses/by-nd/4.0/


 

RR0008_Artificial intelligence in cancer diagnosis_November 2023 18 

However, regardless of segmentation method, the AI model was found to be significantly 
more accurate than a radiology resident (AUC =0.64,95% CI: 0.52% to 0.76%; p=0.01).  
 
Tam et al (2021) evaluated the use of a commercially available AI model (Red Dot, 
Behold.ai) for the diagnosis of lung cancer from X-rays compared to three human readers 
(radiologists) and in combination with the readers. The average accuracy and sensitivity 
for the three human readers alone was 87% (range 84 to 90%) and 78% (range 69 to 
86%); respectively, which was similar to when the AI model was used alone (accuracy 
0.87%, sensitivity 0.8). 
 
Jacobs et al (2021) compared the performance of three top-performing AI algorithms 
(grt123, JWDH, and Aidence) to that of 11 human readers (radiologists) in their ability to 
identify lung cancer from low-dose CT scans. The AUC values were 0.88 (95% CI: 0.84% to 
0.91%) for grt123 algorithm, 0.90 (95% CI: 0.87% to 0.93%) for Aidence algorithm, and 0.90 
(95% CI: 0.87% to 0.93%) for JWDH algorithm. For the radiologists, the AUCs ranged from 
0.841 (95% CI: 0.80% to 0.88%) to 0.94 (95% CI: 0.92% to 0.96%), with an average AUC of 
0.92 (95% CI: 0.89% to 0.95%). The grt123 AI algorithm performed statistically 
significantly better compared to radiologists (p = 0.02) but no differences were found 
between the other models and radiologists (JWDH, p = 0.29; and Aidence, p = 0.26).  
 
Akatsuka et al (2019) assessed whether a DeepCNN AI model (Xception) could correctly 
locate prostate cancer on MRIs compared to human readers (radiologists and pathologists). 
The AI model overlapped the reader-identified targets in a statistically significant 
similar number of the MRI images (70.5% p < 0.001) and was found to focus on a 
statistically significant number of genuine cancer locations (72.1% p<0.001).  
 
Arslan et al (2023) compared the diagnostic performance of four human readers (radiologists 
with different levels of experience), with and without the use of a commercially available 
deep learning AI model (Prostate AI, Version Syngo.Via VB60) for the diagnosis of prostate 
cancer using bi-parametric MRI images. The AUCs of the experienced radiologist and 
one of the less-experienced radiologists were statistically significantly higher than the 
AI model on its own (AUC 0.92; 95% CI:0.88% to 0.96% and 0.85; 95% CI: 0.79% to 
0.91% vs 0.76; 95% CI:0.67% to 0.84%; p< 0.0001 and p= 0.04; respectively). However, no 
significant differences were reported for the other less-experienced radiologists (p = 
0.63 and p = 0.23 respectively). 
 
Zhang et al (2022) assessed the effectiveness of 12 human readers (radiology residents) 
when using a deep learning CNN AI model for the diagnosis of prostate cancer from MRIs. 
The AUC of the AI model alone was 0.77 (95% CI: 0.70% to 0.85%), which was similar 
to clinical assessment 0.78; (95% CI: 0.72% to 0.84%). The AUC for the human readers 
was also similar 0.74; (95% CI: 0.67% to 0.81%) with no statistically significant differences 
reported. 
 
One study evaluated the impact of different image types on the diagnostic performance of 
readers and an AI model in diagnosing prostate cancer. 
 
Tong et al (2023) assessed the impact of using conventional Biparametric MRI (CL-bpMRI) 
and deep learning accelerated Biparametric MRI (DL-bpMRI) images in both a human 
reader study (three radiologists) and a study using a commercially available deep learning-
based computer-assisted detection (DL-CAD) AI model. When using the AI model to assess 
CL-bpMRI and DL-bpMRI images no differences were reported between sensitivity (0.71 vs 
0.71), PPV (0.23 vs 0.24), or NPV (0.88 vs 0.88). However, a statistically significant 
reduction in specificity when using DL-bpMRI compared to CL-bpMRI was found (0.59 vs 
0.44; p = 0.05). No statistically significant differences were reported between the 
human readers for the different image types. The AUC of the human readers ranged from 
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0.57 to 0.77, sensitivity 0.29 to 0.65, specificity 0.5 to0.87, PPV 0.23 to0.41 and NPV 0.81 to 
0.87.  
 
One study evaluated the impact of AI on diagnostic accuracy when looking at lesion shape 
and found mixed results. 
 
Heller et al (2020) assessed the effects of a commercially available deep learning AI support 
system (Koios DS) for the diagnosis of breast cancer from ultrasound images. The AI model 
was statistically significantly more accurate than human readers for irregular shaped masses 
(74.1% vs 57.4%, p = 0.002) and significantly less accurate for round shaped masses 
(26.5% vs 50.0%, p = 0.049).  
 
Effectiveness of AI plus human interpretation of radiological images 
 
A total of 13 studies assessed the effect of AI assisted human interpretation of images when 
diagnosing cancer. 
 
Seven studies (breast n=5, lung n=2) reported a positive effect of using AI plus human 
interpretation on diagnostic accuracy (Jiang et al, 2021, Mango et al, 2020, Pacilè et al, 
2020, Pinto et al, 2021, Calisto et al, 2022, Ueda et al, 2021, Tam et al, 2021). These 
studies used MRI (n=1), ultrasound (n=1), mammograms (n=1), DBT (n=1), CT (n=1), X-ray 
(n=1), and one study used mammograms, ultrasounds and MRIs (n=1). 
 
Jiang et al 2021 compared the diagnostic performance of 19 human readers (radiologists) 
with and without the use of an AI model (QuantX) for the diagnosis of breast cancer from 
dynamic contrast material–enhanced (DCE) MRI. The average AUC of the human readers 
significantly improved when using the AI system (0.71 to 0.76 p = 0.04). Sensitivity 
improved when BI-RADS category 3 was used as the cut-off point (90% to 94%; 95% CI: 
0.8% to 7.4%) but not when using BI-RADS category 4a (80% to 85%; 95% CI: 20.9% to 
11%). Specificity showed no difference with either BI-RADS category 4a or category 3 (from 
52% to 52%;(95% CI: 27.3% to 6.0%), and from 29% to 28%; (95% CI: 26.4% to 4.3%), 
respectively, no p value reported). 
 
Mango et al (2020) assessed the effects of a deep learning AI support system (Koios DS) for 
the diagnosis of breast cancer from ultrasound images in 15 human readers (physicians). 
The mean AUC for the human readers statistically significantly improved from 0.83 
(95% CI: 0.78% to 0.89%) to 0.87 (95% CI: 0.84% to 0.90%) when using the AI model 
(p<0.0001) compared to human readers alone.   
 
Pacilè et al (2020) assessed the effects of an AI model (MammoScreen V1) for the diagnosis 
of breast cancer from mammograms. The average AUC across the 14 included human 
readers (radiologists) significantly improved when using the AI model from 0.77 (95% 
CI: 0.72% to 0.81%), to 0.80 (95% CI: 0.75% to 0.84%); average difference 0.03 (95% 
CI:0.00% to 0.06%; p = 0.035). Sensitivity was also found to significantly improved when 
using the AI model (average increase of 0.03; p=0.21). 
 
Pinto et al (2021) compared the use of an AI model (Transpara. V1.6.0) for the diagnosis of 
breast cancer from DBT images with 14 human readers (radiologists). The average AUC for 
the 14 human readers was statistically significantly higher when interpreting results 
with AI (0.88;95% CI: 0.84% to 0.92% vs 0.85;95% CI: 0.80% to 0.89%, respectively; p = 
0.01). The average sensitivity also significantly increased with the use of AI from 81% (95% 
CI: 74% to 88%) to 86% (95% CI: 80% to 92%) p= 0.006), whereas no differences were 
found in the specificity (71.6%; 95% CI: 65% to 78%; vs 73.3%; 95% CI: 65% to 81%; p = 
0.48). 
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Calisto et al (2022) assessed the use of a deep neural network (DNN) AI model (DenseNet) 
for the diagnosis of breast cancer from mammograms, ultrasound and MRIs. Diagnostic 
accuracy was higher when the 45 human readers (clinicians) used the AI model (mean 
=19.20 and SD =12.81) compared to human reader alone (mean =3.60, SD =4.03). The 
mean and standard deviation for precision and recall with and without using the AI model 
was similar, (M = 0.66, SD = 0.34 and M = 0.62, SD = 0.27, respectively). However, it was 
unclear if these differences were statistically significant. 
 
Ueda et al (2021) compared the diagnostic performance of 18 human readers (nine GPs and 
nine radiologists with different levels of experience), with and without the use of a 
commercially available deep learning AI model (EIRL) for the diagnosis of lung cancer using 
CT images. All human readers significantly improved accuracy, sensitivity, PPV and 
NPV when using the AI model (p<0.001, p<0.001, p=0.002, p<0.001 respectively). The 
overall increases for sensitivity were 1.22 (95% CI:1.14% to 1.30%), specificity 1.00 (95% 
CI:1.00% to 1.01%), accuracy 1.03 (95% CI:1.02% to 1.04%), PPV 1.07 (95% CI:1.03% to 
1.11%), and NPV 1.02 (95% CI:1.01% to 1.03%). 
  
Tam et al (2021) evaluated the use of a commercially available AI model (Red Dot, 
Behold.ai) for the diagnosis of lung cancer from X-rays compared to three human readers 
(radiologists) and in combination with the readers. The overall accuracy and sensitivity 
was significantly increased when human readers used the AI model, improving 
average scores by 3.67% and 13.33%, respectively, p<0.05). 
 
Three studies (lung n=1, prostate n=2) found that the benefits of using different AI models to 
assist human readers were impacted by the level of experience of the reader themselves 
(Wataya et al, 2023, Forookhi et al, 2023, Arslan et al, 2023). These studies used MRI (n=2) 
and CT images (n=1). 
 
Wataya et al (2023) compared the performance of 15 human readers (radiologists with 
varying levels of experience) with and without the use of a deep learning AI model (CAD) for 
the diagnosis of lung cancer from CT images. For all radiologists, significant improvements 
were found when using the AI model for lesions with an ill-defined boundary (AUC from 0.83 
to 0.85 p=0.02), irregular margin (AUC from 0.95 to 0.97 p=0.01), irregular shape (AUC from 
0.86 to 0.91 p<0.01), as well as calcification (AUC from 0.89 to 0.91 p=0.03), plural contact 
(AUC from 0.92 to 0.94 p=0.02) and malignancy (AUC from 0.80 to 0.82 p=0.02). However, 
no significant differences were reported in the group of radiologists with more than 
five years’ experience before and after using the AI model.  
 
Forookhi et al (2023) compared the diagnostic accuracy of four human readers (radiologists 
with different levels of experience), with and without the use of a commercially available AI 
model (Quantib®) for the diagnosis of prostate cancer using mpMRI images. For less 
experienced human readers, the AI model improved diagnostic accuracy, AUC ranges 
rose when using the AI model (from 0.73-0.81 to 0.75-0.86). However, more experienced 
human readers performed better without the use of the AI model (AUC 0.86; 95% 
CI:0.81% to 0.91%, sensitivity 77.2%, specificity 94.3% and AUC 0.92; 95% CI:0.89% to 
0.96%, sensitivity 86.9, specificity 97.7 to AUC 0.81[95% CI:0.76% to 0.86%, sensitivity 
75.4, specificity 86.8 and AUC 0.82 95% CI:0.76% to 0.87%, sensitivity 71.1, specificity 92.0; 
respectively).  
 
Arslan et al (2023) compared the diagnostic performance of four human readers (radiologists 
with different levels of experience), with and without the use of a commercially available 
deep learning AI model (Prostate AI, Version Syngo.Via VB60) for the diagnosis of prostate 
cancer using bi-parametric MRI images. The AUCs of radiologists with and without the 
AI model did not differ overall (AUC ranged from 0.78 to 0.92 without AI to AUC 0.78 to 
0.92 with AI p > 0.05). 
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Three studies (breast n=2, prostate n=1) found the use of AI made no statistically significant 
difference to the diagnostic performance of the human readers (Van Zelst et al, 2020, Heller 
et al, 2020, Zhang et al, 2022). These studies used ultrasound (n=2) and MRIs (n=1). 
 
Van Zelst et al (2020) assessed the effectiveness of eight human readers (radiologists) 
when using a commercially available AI model (QVCAD) for the diagnosis of breast cancer 
from ultrasounds. The overall difference in AUC was not statistically significant before 
0.82 (95% CI: 0.73% to 0.92%) and after 0.83 (95% CI: 0.75% to 0.92%) using the AI 
model (p= 0.74). However partial AUC improved significantly from 0.13 (95% CI:0.10 to 
0.15) to 0.14 (95% CI: 0.12% to 0.17%) (p=0.04) after the AI model was used.  
 
Heller et al (2020) assessed the effects of a commercially available deep learning AI support 
system (Koios DS) for the diagnosis of breast cancer from ultrasound images. No 
statistically significant differences were found in accuracy (69.8% vs 73%) NPV (98.5% 
vs 100%), PPV (42.4% vs 45.5%), sensitivity (96.7% vs 100%), and specificity (61.9% vs 
65.2%; p= 0.12–0.41) before and after two human readers (with breast imaging 
experience) used the AI model. The AI model also significantly improved diagnostic 
accuracy for human reader-rated low-confidence lesions with increased PPV (24.7% AI vs 
19.3%, p = 0.004) and specificity (57.8% vs 44.6%, p = 0.008).  
 
Zhang et al (2022) assessed the effectiveness of 12 human readers (radiology residents) 
when using a deep learning CNN AI model for the diagnosis of prostate cancer from MRIs. 
Overall radiology residents achieved similar sensitivity and specificity before and after 
using the AI model (83.3% and 57.8% vs 81.8% and 59.3%; p=1.0. The AUC for the 
human readers was also similar 0.74; (95% CI: pre, 0.67% to 0.81%; post, 0.68% to 0.81%) 
with no statistically significant differences reported.  
 
Effectiveness of AI as a support tool for inexperienced readers compared to expert 
readers’ interpretation alone  
 
While the above studies compared the diagnostic accuracy of readers before and after being 
assisted by an AI model, only one study assessed the impact of AI on less experienced 
readers compared to expert readers without the use of AI.  
 
Faiella et al (2022) evaluated the clinical utility of an AI model (Quantib Prostate) for prostate 
cancer detection on Multiparametric MRI (mpMRIs) by comparing its diagnostic performance 
when used by human readers with differing levels of experience (an inexperienced 
radiologist using the AI model and an expert radiologist not aided by the AI model). The AI-
assisted radiologist had a sensitivity of 100% in both zones and a PPV of 93.1% in the 
peripheral zone and 85.7% in the transitional zone. Whereas the expert radiologist had 
a sensitivity of 78.5% in the peripheral zone and 76.9% in the transitional zone and a 
PPV of 92.7% in the peripheral zone and 73.2% in the transitional zone. However, it was 
unclear if these differences were statistically significant. 
 
Effectiveness of different AI models  
 
A total of four studies (breast n=2, lung n=1, prostate n=1) compared the diagnostic 
accuracy of a range of AI models (Tsochatzidis et al, 2019, Vamvakas et al, 2022, Toğaçar 
et al, 2019, Patsanis et al, 2023). Findings identified factors that could potentially improve 
diagnosis when using AI. These studies used MRI (n=2), mammograms (n=1), and CT 
images (n=1). 
 
Tsochatzidis et al (2019) compared the diagnostic accuracy of eight CNN AI models 
(AlexNet, VGG-16, VGG-19, ResNet-50, ResNet-101, ResNet-152, GoogLeNet and 
Inception-BN (V2)) either trained from scratch or pre-trained and fine-tuned for the diagnosis 
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of breast cancer using mammograms obtained from two datasets. The highest performing 
models were the fine-tuned ResNet-50 and ResNet-101 models in both datasets (AUC 0.86 
and 0.80 vs 0.86 and 0.79; accuracy 0.74 and 0.75 vs 0.79 and 0.75, respectively). Fine-
tuning a pre-trained network improved accuracy compared to training from scratch (AUC 
ranged from 0.77 to 0.86, accuracy ranged from 0.63 to 0.79 for pre-trained networks 
compared to AUC 0.58 to 0.72 and accuracy 0.54 to 0.66; respectively). However, it was 
unclear if these differences were statistically significant. 
 
Vamvakas et al (2022) evaluated the use of ensemble classification AI models for the 
diagnosis of breast cancer utilising mpMRI. AI models (XGboost, LGBM, Adaboost and GB) 
were compared to a support vector machine (SVM). XGboost achieved the highest 
accuracy and overall performance (accuracy 0.88; 95% CI: 0.84% to 0.92%, AUC 0.95; 
95% CI: 0.91% to 0.99%), followed by LGBM (accuracy 0.87; 95% CI: 0.83% to 0.91%, AUC 
0.94; 95% CI: 0.90% to 0.98%). XGBoost also achieved the highest sensitivity (0.91; 95% 
CI: 0.85% to 0.97%) and specificity (0.90; 95% CI: 0.82% to 0.98%) compared to the other 
models. The SVM had a statistically significantly lower performance (accuracy 0.84; 95% CI: 
0.80% to 0.88%, AUC 0.88; 95% CI: 0.84% to 0.92%) than XGBoost and LGBM but was 
found to be statistically comparable with the performances demonstrated by AdaBoost and 
GB.  
 
Toğaçar et al (2019) compared the effectiveness of multiple AI models (LeNet, AlexNet and 
VGG-16) for lung cancer diagnosis using CT images and found the AlexNet(SGD-Drop(0,5) 
was the best performing model (accuracy 89.14%). However, using a combination of the 
AlexNet model and a k -nearest neighbour (kNN) classifier improved the accuracy of the 
model by 98.74%. Finally, when adding a minimum redundancy maximum relevance 
(mRMR) feature selection method to the model along with the kNN classifier the 
accuracy increased further (99.51%, sensitivity 99.32% and specificity 99.71%).  
  
Patsanis et al (2023) assessed six previously developed deep learning GANs for the 
diagnosis of prostate cancer from MRIs. Six GANs (f-AnoGAN, HealthyGAN, StarGAN, 
StarGAN-v2, Fixed-Point-GAN and DeScarGAN) were evaluated using a validation data set. 
Fixed-Point-GAN performed significantly better (AUC 0.76; 95% CI: 0.65% to 0.84%) than f-
AnoGAN and StarGAN-v2 (AUC 0.54; 95% CI: 0.43% to 0.66%, vs AUC 0.49; 95% CI: 
0.37% to 0.60%; respectively) but not compared to HealthyGAN, StarGAN, and DeScarGAN 
(AUC 0.69; 95% CI: 0.58% to 0.78%, AUC 0.70; 95% CI: 0.60% to 0.80%, AUC 0.68; 95% 
CI: 0.56% to 0.77% respectively).  
 
3.2.1 Bottom line results for the impact of AI on diagnostic accuracy 

The use of AI for the diagnosis of cancer shows inconsistent findings. There is evidence to 
suggest that AI alone may be used to improve the accuracy of cancer diagnosis, but that this 
is dependent on the specific AI model being used. There is also evidence to show that the 
use of AI models to support the accuracy of cancer diagnosis using different radiological 
techniques may be more beneficial to less experienced human readers, and less helpful to 
more experienced human readers. There is very limited evidence to indicate the beneficial 
use of AI when interpreting irregular shaped lesions. 
 
The evidence suggests that pre-training the AI model may improve its diagnostic 
performance. Ensemble models (a combination of multiple AI models) may be more effective 
and additional classifiers can be added to further increase the diagnostic performance of an 
AI model. However, these outcomes were only reported by individual studies and as such 
firm conclusions cannot be made.  
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3.3 Impact of AI on inter and intra-reader variability, reliability, agreement  
 
Four studies (breast n=3, prostate n=1) reported on inter/intra-variability or agreement before 
and after readers used AI (Calisto et al, 2022, Pacilè et al, 2020, Mango et al, 2020, 
Forookhi, et al 2023). These studies used mammograms (n=1), ultrasounds (n=1) and MRIs 
(n=1), with one study using mammograms, ultrasounds and MRIs (n=1). Inter 
reliability/variability or agreement is the agreement or differences in diagnosis between the 
individual human readers and intra reliability/variability or agreement assesses the 
differences reported by the same reader e.g. if the diagnosis would differ after the reader 
used AI. All studies reported some improvement in accuracy when using AI for cancer 
diagnosis.  
 
Calisto et al (2022) assessed the use of a DNN AI model (DenseNet) for the diagnosis of 
breast cancer from mammograms, ultrasound and MRIs. It was found that the inter-
variability of the diagnosis made by the 45 human readers (clinicians) improved when 
using the AI model on patients with low, medium and high severities (depending on BI-RAD 
classification) (11%, 3.28%, 34.1% respectively). When looking at the intra-variability, all 
human readers also improved their results with the introduction of AI, those with little 
experience improved by 6.65%, those with 6 to 10yrs experience improved by 23.66%, those 
with 11 to 30yrs experience improved by 14.58% and those with 31 to 40 yrs improved by 
19.64%. However, it was unclear if these differences were statistically significant. 
 
Pacilè et al (2020) assessed the effects of an AI model (MammoScreen V1) for the diagnosis 
of breast cancer from mammograms and reported that the inter reader reliability among the 
14 human readers (radiologists) appeared to increase when using AI. A moderate inter-rater 
reliability was found in both reading conditions. For the unaided reading condition, the 
inter-rater agreement between the human readers was 0.59 (95% CI: 0.53% to 0.64%), 
while for the reading with AI inter-rater agreement increased to 0.68 (95% CI: 0.62% to 
0.73%). However, it was unclear if these differences were statistically significant. 
 
Mango et al (2020) assessed the effects of a deep learning AI support system (Koios DS) for 
the diagnosis of breast cancer from ultrasound images on 15 human readers (physicians). 
Inter-reader variability without AI was 0.54 (95% CI: 0.53% to 0.55%; compared to 0.68 
(95% CI: 0.67% to 0.69%) with the AI. Intra-reader variability improved with AI, showing 
a statistically significant difference (α = 0.05). Intra-reader variability resulted in less class 
switching (e.g. from lower than BI-RADS 4A to BI-RADS 4A or higher) with AI than without 
overall. Although a statistically significant trend toward lower intra reader variability with AI 
was reported. The class switching rate without AI was 13.6%, and with AI was 10.8% (p = 
0.04). Nine readers showed decreased class switching with AI, one reader showed 
equivalent class switching and five showed more class switching with AI. The findings 
indicate that the overall improvement in intra reader variability did not extend to all 
readers. 
 
Forookhi et al (2023) compared the diagnostic accuracy of four human readers (radiologists 
with different levels of experience), with and without the use of a commercially available AI 
model (Quantib®) for the diagnosis of prostate cancer using mpMRI images. The results 
showed that the inter-reader agreements at different PI-QUAL scores were higher with the 
use of the AI model, particularly for less experienced human readers, showing a moderate to 
slight agreement. However, it was unclear if the differences were statistically 
significant. 
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3.3.1 Bottom line results for the impact of AI on inter and intra-reader variability, 
reliability, agreement  

There is some evidence to suggest that using an AI model as a support tool may increase 
agreement between human readers and inter/intra variability. There is also evidence to 
suggest that agreement between readers may be improved more in those with less 
experience. However, as a limited number of studies reported this outcome firm conclusions 
cannot be made.  
 
3.4 Impact of AI on cancer diagnostic time intervals  
 
A total of five studies (breast n=3, lung n=1, prostate n=1) reported the impact of AI on 
cancer diagnostic time intervals, all of which explored the impact of AI on human reader 
interpretation of different radiological images (Calisto et al, 2022, Wataya et al, 2023, 
Forookhi et al, 2023, Pinto et al, 2021, Pacilè et al, 2020). These time intervals included time 
to diagnosis, assessment time, evaluation times, and reading time. The different time 
intervals were not clearly defined in most studies and as such are reported individually 
below. The findings appear to be inconsistent. 
 
Time to diagnosis  
 
One study reported the impact of AI models on diagnostic time. Calisto et al (2022) 
assessed the use of a DNN AI model (DenseNet) for the diagnosis of breast cancer from 
mammograms, ultrasound and MRIs. The findings showed that when the 45 human 
readers (clinicians) used the AI model, the time to diagnosis was reduced by 31% with 
an average of 308 seconds (s) (SD = 57.03s) when using the AI model in comparison with 
no assistance in which the average was 377s (SD = 44.56s). However, it is unclear if this 
difference was statistically significant. 
 
Assessment time 
 
One study reported the impact of the AI on assessment time. Wataya et al (2023) compared 
the performance of 15 human readers (radiologists with varying levels of experience) with 
and without the use of a deep learning AI model (CAD) for the diagnosis of lung cancer from 
CT images. A statistically significant reduction in median assessment time was found 
when the readers used the AI model (83.6s without AI to 69.9s with AI; p= 0.01). However, 
this difference was not seen for all radiologists, with the assessment time actually being 
prolonged when using the AI model for three of the 15 radiologists included, no reasons 
were provided for this difference.  
 
Reading time  
 
Two studies (breast n=2) reported on the impact of AI specifically on human reading times 
(Pinto et al, 2021, Pacilè et al, 2020). These studies used DBT images (n=1) and 
mammograms (n=1). Both of which found that the reading times changed depending on the 
level of suspicion/likelihood of malignancy. 
 
Pinto et al (2021) assessed the use of an AI model (Transpara. V1.6.0) for the diagnosis of 
breast cancer from DBT images. Reading times of the 14 human readers (radiologists) 
were shown to decrease when using AI for low suspicion examinations (by 8%) but 
increase when using AI for high suspicion examinations (by 28%), however no significant 
differences were found (p=0.35).  
 
Similarly, Pacilè et al (2020) assessed the effects of an AI model (MammoScreen V1) for the 
diagnosis of breast cancer from mammograms in 14 human readers (radiologists). Reading 
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time was considered from the opening of a new case until a BI-RADS score was provided. 
For images with a low likelihood of malignancy the time was similar in the first reading 
session and slightly decreased in the second reading session. However, for images with a 
higher likelihood of malignancy, the reading time was on average increased with the 
use of AI.  
 
Time for entire process of image interpretation 
 
One study reported the impact of AI on a range of time outcomes. Forookhi et al (2023) 
compared the diagnostic accuracy of four human readers (radiologists with different levels of 
experience), with and without the use of a commercially available AI model (Quantib®) for 
the diagnosis of prostate cancer using mpMRI images. Reporting time included four different 
time intervals (mean uploading time, mean time taken for segmentation and contouring, 
mean time taken for lesion identification, mean report generation time). The use of the AI 
model led to a statistically significant increase in reporting time which ranged from 
123.81s (+/- 51.25s) to 189.14s (+/- 67.08s) without Quantib®, and from 697.44s (+/- 
98.88s) to 792.47s (+/- 122.37) with Quantib®. (p < 0.001). The uploading time was reported 
to be the most time-consuming step, followed by the time for segmentation and time for 
lesion identification.  
 
3.4.1 Bottom line results for the impact of AI on cancer diagnostic time intervals 

The evidence regarding the impact of AI on cancer diagnostic time intervals appears to be 
inconsistent. Time to diagnosis and assessment times were reported to decrease, however 
these findings were only reported by individual studies meaning firm conclusions cannot be 
made. The evidence for reading times appears to show that the use of AI could increase or 
decrease reader time compared to reader only, depending on the suspicion level or 
likelihood of malignancy. Further research would be needed to better understand the impact 
of using AI on the workflow of cancer diagnosis.  
 
3.5 Clinicians’ acceptance and receptiveness of the use of AI for cancer 
diagnosis 
 
One study (Calisto et al, 2022) assessed the use of a DNN AI model (DenseNet) for the 
diagnosis of breast cancer from mammograms, ultrasound and MRIs and explored the 
acceptance and receptiveness of the human readers (clinicians) who utilised the AI model 
using a questionnaire. A total of 98% of the 45 clinicians questioned suggested that 
they understood what the system was thinking, 93% trusted the AI models 
capabilities, and 91% were accepting of and preferred the AI approach.  
 
3.5.1 Bottom line results for clinicians’ acceptance and receptiveness of the use of AI 
for cancer diagnosis 

There is evidence to suggest that human readers (clinicians) may understand and trust the 
use of AI and in general may be accepting of using AI when diagnosing cancer in practice. 
However, the evidence was reported by one study only and as such firm conclusions cannot 
be made. Further research would be needed to better understand the acceptability of 
clinicians when using AI for cancer diagnosis.  
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Table 3: Summary of the findings for the impact of artificial intelligence (AI) on diagnostic accuracy 
 

Study Cancer Comparison Type of 
diagnostic 
test  

Direction 
of effect2 
 

Findings (AI vs control) 
 
Statistically significant effects highlighted in green 

Comments 

Effectiveness of AI compared to human readers/usual methods 
Uhlig et al 
(2018) 

BC 5 AI models (machine 
learning techniques) 
vs 2 radiologist 

CT Favours 
intervention 

AUC:  0.91 vs 0.72-0.84 
Sensitivity  0.85 vs 0.71-0.89 
specificity  0.82 vs 0.67-0.72 
 

 

Lo Gullo et al 
(2020) ~ 

BC AI model vs 2 
radiologists 

MRI Favours 
intervention 

Diagnostic accuracy:  81.5% vs 53.4%  
Sensitivity:  63.2% vs 75%,  
Specificity:  91.4% vs 42.1% 
PPV:  80% vs 40.5% 
NPV:  82.1% vs 76.2% 

 

Baldwin et al 
(2020) 

LC AI model vs Brock 
model** 

CT Favours 
intervention 

AUC: 89.6% (95% CI: 87.6% to 1.5%) vs 86.8% (95% CI: 
84.3% to 89.1%) 

 

Maldonado et al 
(2021) ~ 

LC AI model vs Brock 
model** 

CT Favours 
intervention  

AUC : 0.90 (95% CI:0.85% to 0.94%) vs 0.87 (95% 
CI:0.81% to 0.92%) 

 

Fujioka et al 
(2021) 

BC 6 AI models vs 1 
breast surgeon and 1 
radiologist 

MRI No change AUC: 0.90 vs 0.82, and 0.85 
Sensitivity: 74.5% vs 72.3%, and 78.7% 
Specificity: of 96.0%, 88.0%, and 80.0% 

 

O’Connell et al 
(2022) 

BC AI model vs 10 
radiologists 

Ultrasound No change Accuracy: 0.82 vs 0.72 
Sensitivity: 0.81 vs 0.78  
Specificity: 0.83 vs 0.66 

Results were 
impacted by the level 
of experience of the 
reader 

Goto et al 
(2023) 

BC AI model vs 3 
radiologists 

MRI No change AUC: 0.91, (95% CI:0.90% to 0.93%) vs 0.89, (95% 
CI:0.81% to 0.96%) 

Results were 
impacted by the level 
of experience of the 
reader 

Tam et al 
(2021) 

LC AI vs 3 radiologists  X-ray No change Accuracy for AI: 87%, 
Sensitivity for AI: 80% 
Accuracy for humans: 87% (range 84-90%) 
Sensitivity for humans: 78% (range 69-86%); 
 

 

 
 
2 The direction of effect was determined based on whether the results were statistically significant. 
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Study Cancer Comparison Type of 
diagnostic 
test  

Direction 
of effect2 
 

Findings (AI vs control) 
 
Statistically significant effects highlighted in green 

Comments 

Jacobs et al 
(2021) 

LC 3 AI models vs 11 
radiologists 

CT No change AUC for AI models: 0.88 (95% CI: 0.842% to 0.910%), 
0.90 (95% CI: 0.87% to 0.93%) and 0.90 (95% CI: 0.87% 
to 0.93%). 
AUC for radiologists: 0.92 (95% CI: 0.89% to 0.95%). 

Results were 
impacted by the 
individual AI model 
used 

Akatsuka et al 
(2019) 

PC AI model vs 
radiologists and 
pathologists 

MRI No change Overlap of targets: 70.5% 
Genuine cancer locations 72.1% 

 

Arslan  et al 
(2023) 

PC AI vs 4 radiologists  MRI Mixed 
effects 

AUC for AI: 0.76 (95% CI 0.67–0.84) 
AUC for experienced radiologist: 0.92 (95% CI 0.88–
0.96), 
AUC for less-experienced radiologist 1: 0.85 (95% CI 
0.79–0.91), 
AUC for less-experienced radiologist 2: 0.81 (95% CI 
0.73–0.88), 
AUC for less-experienced radiologist 3: 0.78 (95% CI 
0.70–0.86). 

Results were 
impacted by the 
experience of the 
radiologists 

Zhang et al 
(2022) 

PC AI vs 12 radiology 
residents 

MRI No change AUC for AI: 0.77 (95% CI: 0.70% to 0.85%),  
AUC for clinical assessment: 0.78; (95% CI: 0.72% to 
0.84%).  
AUC for the humans: 0.74; (95% CI: 0.67% to 0.81%)  

 

Tong et al 
(2023) ~ 

PC AI model vs 3 
radiologists 

MRI No change Sensitivity of AI for different image types: 0.71 vs 0.71 
PPV of AI for different image types: 0.23 vs 0.24 
NPV of AI for different image types: 0.88 vs 0.88 
specificity of AI for different image types: 0.59 vs 0.44; p 
= 0.05. 
Radiologist AUC: 0.57-0.77 
sensitivity: 0.29-0.65 
specificity 0.5-0.87 
PPV: 0.23-0.41 
NPV: 0.81-0.87 

Specificity was 
reduced when using 
the DL-bpMRI 
images with the AI 
model. 

Heller et al 
(2020) 

BC AI model vs 2 human 
readers 

Ultrasound Mixed 
effects 

Accuracy for irregular shaped masses (AI vs human): 
74.1% vs 57.4%, p = 0.002 
Accuracy for round shaped masses (AI vs human): 26.5% 
vs 50.0%, p = 0.049 

Results were 
impacted by the 
shape of the breast 
lesions 

Impact of AI on human interpretation of different radiological images 
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Study Cancer Comparison Type of 
diagnostic 
test  

Direction 
of effect2 
 

Findings (AI vs control) 
 
Statistically significant effects highlighted in green 

Comments 

       
Jiang et al 2021 BC 19 radiologists 

without vs with AI  
MRI Favours 

intervention  
AUC: 0.71 VS 0.76 
Sensitivity with BI-RADS 4a cut-off: 80% vs 85%; (95% 
CI: 20.9%-11%) 
Sensitivity with BI-RADS 3 cut-off: 90% vs 94%; (95%CI: 
0.8% -7.4%) 
Specificity with BI-RADS 4a cut-off: 52% to 52%;(95% CI: 
27.3%t to 6.0%) 
Specificity with BI-RADS 3 cut-off: 29% to 28%; (95% CI: 
26.4% to 4.3%) 

 

Mango et al 
(2020) 

BC 15 physicians without 
vs with AI 

Ultrasound Favours 
intervention 

AUC: 0.83 (95% CI: 0.78% to 0.89%) vs 0.87 (95% CI: 
0.84% to 0.90%) 

 

Pacilè et al 
(2020) 

BC 14 radiologists 
without vs with AI 

Mammogram Favours 
intervention 

AUC: 0.77; (95% CI: 0.72% to 0.81%) vs 0.80;(95% CI: 
0.75%-0.84%) 
Sensitivity: Average increase of 0.03 

 

Pinto et al 
(2021) 

BC 14 radiologists 
without vs with AI 

DBT Favours 
intervention  

AUC: 0.85;(95% CI: 0.80% to 0.89%) vs 0.88;(95% CI: 
0.84% to 0.92% 
Sensitivity: 81%; (95% CI: 74% to 88%) vs 86%;(95% CI: 
80% to 92%) 
Specificity: 71.6%;(95% CI: 65% to 78%) vs 73.3%;(95% 
CI: 65% to 81) 

 
Change in specificity 
not significantly 
different 

Calisto et al 
(2022) 

BC 45 clinicians without 
vs with Ai 

Mammogram Favours 
intervention  

Accuracy: mean =3.6, SD =4.03 vs mean =19.2 and SD 
=12.81 

 

Ueda et al 
(2021) 

LC 9 GPs and 9 
radiologists without vs 
with AI 

CT Favours 
intervention  

Accuracy increase: 1.03 (95% CI:1.02% to 1.04%) 
Sensitivity increase: 1.22 (95% CI:1.14% to 1.30%) 
Specificity increase: 1.00 (95% CI:1.00% to 1.01%) 
PPV increase: 1.07 (95% CI:1.03% to 1.11%) 
NPV increase: 1.02 (95% CI:1.01% to 1.03%) 
 

 

Tam et al 
(2021) 

LC 3 radiologists without 
vs with AI 

X-ray Favours 
intervention  

Accuracy increased: 3.67% 
Sensitivity increased: 13.33% 

 

Wataya et al 
(2023) 

LC 15 radiologists 
without vs with AI 

CT Mixed 
effects 

AUC for ill-defined boundary: 0.83-0.85 p=0.02 
AUC for irregular margin: 0.94-0.96 p=0.01 
AUC for irregular shape: 0.86-0.90 p<0.01  
AUC for calcification: 0.89-0.91 p=0.03 

Results were 
impacted by the level 
of experience of the 
reader 
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Study Cancer Comparison Type of 
diagnostic 
test  

Direction 
of effect2 
 

Findings (AI vs control) 
 
Statistically significant effects highlighted in green 

Comments 

AUC for plural contact: 0.92-0.94 p=0.02 
AUC for malignancy: 0.80-0.82 p=0.02 
However, no significant differences were reported for 
radiologists with more than five years’ experience 

Forookhi et al 
(2023) 

PC 4 radiologists without 
vs with AI 

MRI Mixed 
effects 

Low experience AUC: 0.73-0.81 vs 0.75-0.86 
High experience AUC: 0.86-.0.92 vs 0.81-0.82 
High experience sensitivity: 77.2-86.9 vs 75.4-71.1 
High experience specificity 94.3-97.7 vs 86.8-92.0 

Results were 
impacted by the level 
of experience of the 
reader 

Arslan et al 
2023 

PC 4 radiologists without 
vs with AI 

MRI Mixed 
effects  

AUC: 0.78-0.92 vs 0.78-0.92 Results were 
impacted by the level 
of experience of the 
reader 

Van zelst et al 
(2020 

BC 8 radiologists without 
vs with AI  

Ultrasound No change AUC: 0.82 (95% CI:0.73% to 0.92%) vs 0.83 (95% 
CI:0.75% to 0.92%) 

 

Heller et al 
(2020) 

BC 2 human readers 
without vs with AI 

Ultrasound No change Accuracy: 69.8% vs 73% 
Sensitivity: 96.7% vs 100% 
Specificity: 61.9% vs 65.2% 
PPV: 42.4% vs 45.5% 
NPV: 98.5% vs 100% 
 

 

Zhang et al 
2022 

PC 12 radiology residents 
without vs with AI  

MRI No change  AUC: 0.74; (95% CI:0.67% to 0.81%) vs 0.74; (95%CI: 
0.68% to 0.81%) 
Sensitivity: 83.3% vs 81.8% 
Specificity: 57.8% vs 59.3% 

 

Effectiveness of AI as a support tool for inexperienced readers compared to expert readers’ interpretation alone 
       
Faiella et al 
(2022) 

PC Inexperienced 
radiologist using AI vs 
expert radiologist 
unaided by AI 

MRI Favours 
intervention  

Sensitivity:  100% vs 78.5% in the peripheral zone; 100% 
vs 76.9% in the transitional zone  
PPV:  93.1% vs 92.7% in the peripheral zone and 85.7% 
vs 73.2% in the transitional zone 

 

 Effectiveness of different AI models  
       
Tsochatzidis et 
al (2019) 

BC 8 AI models Mammogram N/A Pre-trained network AUC: 0.77-0.86, 
Pre-trained network accuracy: 0.63-0.79  
Trained from scratch network AUC: 0.58-0.72  
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Study Cancer Comparison Type of 
diagnostic 
test  

Direction 
of effect2 
 

Findings (AI vs control) 
 
Statistically significant effects highlighted in green 

Comments 

Trained from scratch network accuracy: 0.54-0.66 
Vamvakas et al 
(2022) 

BC 5 AI models MRI N/A Accuracy of best performing model: 0.88; (95%;CI:0.84%-
0.92%) 
AUC of best performing model: 0.95; (95%CI:0.91% to 
0.99%) 

 

Toğaçar et al 
(2019) 

LC 3 AI models CT N/A Accuracy of best performing model: 89.14% 
Accuracy of model with and added kNN classifier: 98.74% 
Accuracy of model with Knn classifier and feature 
selection method:99.51% 
Sensitivity of model with Knn classifier and feature 
selection method: 99.32% 
Specificity of model with Knn classifier and feature 
selection method: 99.71% 

 

Patsanis et al 
(2023) 

PC 6 AI models MRI N/A Fixed-Point-GAN AUC: 0.76;(95% CI:0.65% to 0.84%)  
f-AnoGAN AUC: 0.54;(95% CI:0.43% to 0.66%) 
StarGAN-v2 AUC: 0.49;(95% CI:0.37% to 0.60%) 
HealthyGAN AUC: 0.69;(95% CI:0.58% to 0.78%) 
StarGAN AUC: 0.70;(95% CI:0.60% to 0.80%) 
DeScarGAN AUC: 0.68;(95% CI:0.56% to 0.77%) 
 

 

** Brock model is a lung cancer probability calculator. ~ Identified as low risk of bias using the QUADAS-2 and QUADAS-C tools .  
Abbreviations: Breast cancer (BC), Lung cancer (LC), Prostate cancer (PC), Not applicable (N/A), Area under the curve (AUC), Confidence interval (CI),  
Negative predictive value(NPV), Positive predictive value (PPV), k-Nearest Neighbour (KNN) Generative Adversarial Networks (GAN). 
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4. DISCUSSION  

4.1 Summary of the findings 

The mapping exercise showed that there is a large volume of early stage (developmental 
and validation) research studies of AI models in cancer diagnosis, covering a wide range of 
cancers, but none of these studies evaluated the implementation of the AI models in clinical 
practice. There are a number of studies that have evaluated previously developed or 
commercially available AI tools, which may be useful to inform practice. 
 
There is evidence to suggest that AI models may be effective at improving cancer diagnosis 
accuracy however, the evidence appears to be limited and the findings were not always 
statistically significant. No study reported findings that showed an overall greater degree of 
diagnostic accuracy in the control group compared to the AI. All studies that were identified 
showed significant improvements or no significant differences when compared to human 
readers or other conventional methods, and when the AI assisted human readers. 
Regardless of how the AI model was used (i.e., compared to readers or used to assist 
readers) or the cancer type being diagnosed, studies were identified that demonstrated the 
benefit of using AI in cancer diagnosis was dependent on the level of experience of the 
human reader. Evidence suggests that AI models may have a similar level of diagnostic 
accuracy compared to experienced human readers (clinicians or radiologists) but may 
increase the accuracy of less experienced human readers when used as a support tool. 
However, the criteria for being classed as a more or less experienced reader varied between 
studies so it is unclear how strong this impact is overall. 
 
When comparing a range of AI models several factors were reported to improve diagnostic 
accuracy. This included pre-training the AI model, adding additional classifiers or combining 
models to build ensemble models. However, these findings were reported by individual 
studies and as such further evidence would be needed to confirm this. 
 
Inter and intra-reader variability, reliability, agreement, was reported by a limited number of 
studies (n= 4). While all studies reported overall improvements, it was noted in one study 
that improvements were not reported for each human reader although no exploration as to 
why this occurred was provided. Another study again highlighted the effectiveness of an AI 
model to improve agreement was dependent on the level of experience of the human reader. 
 
The evidence regarding the use of AI as a time saving measure in cancer diagnosis was 
also inconsistent. A limited number of studies (n=5) reported on the impact of AI on time and 
the specific time outcome reported varied between studies. While diagnostic time and 
assessment time were reported to be reduced overall when using an AI model, the overall 
image interpretation time was found to be increased when using AI. However, these 
outcomes were only reported by individual studies, so findings should be interpreted with 
caution. Two studies identified the impact of AI on reading times was dependent on the level 
of suspicion or likelihood of malignancy. However, this is based on very limited evidence and 
as such firm conclusions cannot be made. There was also very limited evidence to suggest 
that clinicians may be accepting of AI when used as a support tool in cancer diagnosis.  
 
While the results of the quality appraisal showed minimal concern regarding applicability to 
the review question, the majority of studies had some methodological limitations which led to 
an increased risk of bias (see Table 7, Fig.1). This was primarily related to the patient image 
selection process, which was often poorly described within the included studies and how the 
index tests (comparators) were conducted. In some cases, the same images were used for 
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the human readers to interpret first without the use of the AI model and then with the AI 
model (with a short time gap between them) which could have introduced bias as the human 
reader plus AI group would have already seen all of the images being studied when the AI 
tool was introduced. The reference standard used also varied across studies and in one 
study the reference standard was not clearly stated. 
 
The considerable variation in the individual AI models studied, type of cancer being 
diagnosed, and types of images being used (e.g. MRI CT, X-ray etc.), as well as the 
methodological limitations of included studies could limit the applicability of these findings 
and the results should be interpreted with caution. It should also be noted that some studies 
did acknowledge potential conflicts of interest as the authors worked for the company that 
developed the AI model. However, this may be expected, as not all AI models included in the 
in-depth synthesis were commercially available. The overall findings may also be subject to 
publication bias, were studies that have identified AI to be less effective than a control are 
not submitted for publication and therefore not included here. 
 
The National Institute for Health and Care Excellence (NICE) (2019) have created the 
Evidence Standards Framework For Digital Health Technologies which outlines the 
standards a health technology, such as AI would need to meet in order to show its 
effectiveness for use in the UK. However further standards are to be developed for AI 
models using adaptive algorithms that continually update. It was unclear from the included 
studies whether the AI models assessed were fixed or adaptive, however only one study 
described the use of an AI model, Red Dot Behold.ai, that was commercially available in the 
UK (Tam et al, 2021). This model has been suggested to be able to diagnose multiple 
conditions including lung cancer and stroke using CT or X-ray images, further details about 
this model and its potential uses can be found online (behold.ai). While this model has been 
FDA and CE approved and CQC registered, it is unclear if it has received approval from 
NICE. However, the model was included in a recent early value assessment published by 
NICE exploring the use of AI in analysing chest X-rays for suspected lung cancer, further 
details on the findings of the assessment can be found online (NICE 2023). 
 
 
4.2 Strengths and limitations of the available evidence    

All included studies in the in-depth synthesis were comparative in design and as such were 
best suited to explore effectiveness of AI models in cancer diagnosis in a real-world setting. 
The evidence included was published within five years of this rapid review being conducted 
which should increase the relevancy of the findings. Despite some methodological 
limitations, all included studies were published in peer-reviewed journals. 
 
The majority of the included studies (n=25) were retrospective and gained the images being 
studied through historical datasets, as such the data used may not reflect the real-world 
impact of incorporating AI into the healthcare sector.  
 
The findings also highlighted several evidence gaps. As can be seen in Table 1, none of the 
studies that met the inclusion criteria reported any findings related to patient outcomes 
(including harms), economic outcomes or any outcomes related to equity. As the majority of 
studies were retrospective or utilised images from patients who had already been diagnosed 
with or without cancer no evidence was found to show AI may be effective in diagnosing 
cancer in a genuine real-world setting. While two studies were conducted in the UK only one 
of these described using an AI model that was commercially available in the UK. It was 
unclear if the AI models used for cancer diagnosis are able to be replicated in Wales. 
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There was limited evidence to suggest the use of AI could reduce the time to diagnosis and 
the perceptions of clinicians. Due to the heterogeneity of included studies, caution should be 
applied when interpreting the findings of the review.  
 
The included studies explored the use of a range of AI models, which may explain the 
inconsistent findings, and is likely to limit the generalisability of the findings to all AI models.  
 
Key details pertaining to the dataset used, and type of AI model were often lacking or not 
clearly reported within the included studies. Study designs were also poorly reported across 
included studies and the cancer type and imaging technique varied across studies, which 
could limit the generalisability of the findings to specific contexts.  
 
4.3 Strengths and limitations of this rapid review  
 
The studies included in this rapid review were identified through a comprehensive search of 
electronic databases. Despite making every effort to capture all relevant publications and 
reduce the risk of bias in our review process, it is possible that additional eligible publications 
may have been missed. To ensure the usefulness of our findings, only comparative studies 
were included in the review, as these are better placed to determine the presence of cause-
and-effect relationships when exploring effectiveness. 
 
AI is a complex and fast developing field. Multiple AI models have been assessed within the 
literature over time, and AI models that have shown promising results are also continually 
developed, adding for example additional classifiers etc to improve performance. As such, it 
is challenging to collate the evidence as even within a few months or years the technology 
evaluated within this rapid review is likely to be outdated compared to the newly developed 
advanced AI models. This development in technology also makes it difficult to directly 
compare different AI tools. The reference standard used across studies also varied including 
histopathologic examinations, decisions made by expert radiologists or follow-up and in one 
study the reference standard was not clearly stated further limiting the generalisability across 
studies. 
 
It is also important to note that although the QUADAS-2 tool and its extension QUADAS-C 
are designed to assess the methodological quality of diagnostic and comparative study 
designs included in this rapid review, they are not designed to assess any methodological 
issues related to the use of the AI models. The review team is aware of a further adapted 
extension to the QUADAS tool (QUADAS-AI) that is due to be published in future, which 
would better assess specific methodological considerations relating to AI models. However, 
this extension was unavailable at the time this rapid review was conducted. Sounderajah et 
al (2021) highlighted potential biases that could occur when using AI. This included the use 
of open source datasets as these datasets may include duplications, may contain images 
that are not labelled correctly and may have incomplete data. As such, the results of the 
quality appraisal should be interpreted with caution. Furthermore, QUADAS-2 may not have 
been sufficient to assess the quality of the studies for evaluating outcomes other than 
diagnostic accuracy. 
 
4.4 Implications for policy and practice   

This rapid review has provided an insight into the effectiveness of AI in cancer diagnosis, 
and factors that can impact the accuracy of AI models, such as the level of experience of the 
individual interpreting the AI results. This information may be useful when planning how best 
to incorporate AI into the health and care sector. Further well-designed high-quality research 
is needed from the UK and similar countries to better understand the effectiveness of AI in 
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cancer diagnosis. However, given the pace of development in this field, it is difficult to make 
recommendations on one specific AI tool for use in radiology diagnostics for cancer. 
 
Although the focus of the in-depth synthesis was on the use of AI for interpreting radiological 
images in breast, lung and prostate cancer diagnosis, other important areas in which AI 
could provide benefit were also identified during screening and during the mapping exercise. 
These included the use of AI for radiological image quality improvement, differentiating 
between different types of cancers (e.g. between glioblastoma and primary central nervous 
system lymphoma), or in the detection of metastases. These areas should be considered 
when planning for AI incorporation into the health and care sector. 
 
4.5 Implications for future research   

- Further research is needed to explore the effectiveness of AI models for cancer 
diagnosis in a real world setting and to evaluate the ongoing use of AI in cancer 
diagnosis. 

- Further research is needed to validate the use of specific AI models. 
- Further research is needed to determine in which context the use of AI would be 

most effective (e.g. as a support tool for less experienced clinicians/radiologists) 
- Further research is needed to explore the impact of cancer diagnosis using AI on 

patient harm, costs, and equity.  
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4.6 Economic considerations*  
 

• In theory it might be possible for AI to assist with earlier diagnosis of cancer with 
both health and economic benefits. However, there are currently no minimum 
requirement guidelines in terms of effectiveness or cost-effectiveness of AI use in 
cancer screening in the UK. Work from Vargas-Palacios (2023) and colleagues 
aims to develop such guidelines.  

• There is little evidence on the cost-effectiveness of using AI for cancer diagnosis. 
One modelling paper from the United States (US) suggests using AI in lung cancer 
screening low-dose computerised tomography (CT) scans can be cost-effective, 
up to a cost of $1,240 per patient screened, giving a willingness-to-pay of 
$100,000 per quality-adjusted life year (QALY) gained (Ziegelmayer et al, 2022). 
This is high in comparison to US and UK payer thresholds. 

• The UK (and its constituent countries) perform consistently poorly against 
European and international comparators in terms of cancer survival rates (Arnold 
et al, 2019). Cancer screening was suspended and routine diagnostic work 
deferred in the UK as a result of the COVID-19 pandemic. Modelling suggests up 
to 3,620 avoidable additional deaths will occur between 2020 and 2025 due to the 
impact of the pandemic on cancer services (Maringe et al 2021).  

• Later stage diagnoses (3 & 4) incur greater costs to the healthcare system across 
most colorectal, pancreatic, lung and kidney cancers (White 2023). Almost half 
(46%) of all cancer cases were diagnosed at stage 3 and 4 (out of those with a 
known stage at diagnosis) in England in 2018 (Cancer research UK, 2023).  

• The cost of cancer to the UK economy in 2019 was estimated to be least £1.4 
billion a year in lost wages and benefits alone (Hilhorst and Lockey, 2023). When 
widening the perspective to include mortality, this figure rises to £7.6 billion a year. 
Pro-rating both figures to the Welsh economy and adjusting for inflation gives 
figures of £79 million and £429 million per annum respectively (Bank of England, 
2023).  

*This section has been completed by the Centre for Health Economics & Medicines Evaluation 
(CHEME), Bangor University 
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6. METHODS  

The rapid review was conducted in two stages, which included an initial mapping exercise 
followed by a more in-depth review of a sub-set of study types that stakeholders considered 
to be the most relevant to inform practice. 
 
6.1 Mapping exercise methods 
 
6.1.1 Eligibility criteria 

We searched for primary sources to answer the review questions: ‘What is the effectiveness 
of artificial intelligence in radiology for cancer diagnosis?’ The following eligibility criteria 
were used to identify studies for inclusion in the rapid review. 
 
Table 4: Eligibility criteria for mapping exercise  
 Inclusion criteria Exclusion criteria 
Participants Patients of all ages (children and 

adults) referred to radiology with 
suspected cancer  

 

Intervention / 
exposure 

The use of AI within the clinical 
workflow of medical imaging for 
diagnosis and screening of cancer 
(e.g. X-ray, CT, MRI, PET, CBCT, 
ultrasound) 

 

Comparison Usual care (no AI) 
Alternative AI models /applications 
/approaches 

 

Outcomes  Primary outcomes(s): 
• Safety/harm outcomes  
• Patient care/outcomes (e.g. 

recovery time, need for further 
intervention) 

• Performance outcomes (e.g. 
time to diagnosis, time to 
treatment, time to discharge)  

• Clinical outcomes (e.g. 
diagnostic performance 
/classification /accuracy) 

• Economic outcomes 
• Equity (e.g. bias) 

 

Study design Primary (comparative) studies, full 
economic evaluations, modelling 
studies with real world data 
 

Secondary/tertiary research,  
partial economic 
evaluations, case reports 

Countries OECD countries pre-1974 Non-OECD countries or 
post 1974 membership 

Language of 
publication  

English  
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Publication type Published and preprint Excluded letters and 
conference abstracts, 
commentaries and editorials 

Publication date Papers published since 2018  
 
 
6.1.2 Literature search  

A search of Medline (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials 
(CENTRAL) and ScanMedicine (NIHR) was conducted on the 20th June 2023. Terms to 
describe the key concepts of artificial intelligence, radiological imaging and cancer were 
utilised. Search concepts and keywords included artificial intelligence, deep learning, 
machine learning, neural networks, cancer, medical imaging (X-ray, CT, MRI, PET, CBCT, 
ultrasound). The searches included free text words and subject headings. The NICE OECD 
countries geographic search filter was used for the searches in Medline and Embase. 
Searches were limited to English language publications that were published since 2018 and 
to primary studies. A total of 21,403 records were retrieved which were managed in Endnote 
20. Following deduplication, 20,043 records remained. The search strategy used to search 
MEDLINE is available in Appendix 4. 
 
6.1.3 Study selection process 

All studies were uploaded to the systematic reviewing platform Rayyan for title and abstract 
screening. All studies were screened by a single reviewer and to ensure consistency a 
proportion (5%) of studies were screened by two independent reviewers. Any conflicts were 
resolved within the team. A total of 640 articles were screened at full text by two independent 
reviewers, and any conflicts were discussed and resolved by a third reviewer. A visual 
representation of the flow of studies throughout the review can be found in Figure 6.1. 
 
6.1.4 Study design classification 

The included studies were classified as diagnostic test accuracy studies. 
 
6.1.5 Classification of studies for map 

All included studies were coded into the following categories: 
• Type of cancer 
• AI model development stage (commercially available, previously developed or 

developed specifically for the purposes of the study) 
• The number of images used in the dataset 
• Outcome measures reported in primary study 
• The comparator (human or AI) 

 
Once coding was complete, the map was constructed and presented to stakeholders to 
enable them to identify a focus for the rapid review. 
 
6.2 In-depth synthesis methods 
 
6.2.1 Study selection process 

Once a focus for the in-depth synthesis had been agreed with stakeholders, the 92 studies 
included in the map were rescreened for eligibility in the in-depth synthesis. A visual 
representation of the flow of studies throughout the review can be found in section 7.1. 
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6.2.2 Eligibility criteria for the in-depth synthesis 

Table 5. Eligibility criteria for inclusion in the in-depth synthesis 
 Inclusion criteria Exclusion criteria  
Participants Patients of all ages (children and adults) 

referred to radiology with suspected 
breast, prostate or lung cancer  
 

Focus on other cancer 
types 

Intervention / 
exposure 

The use of AI within the clinical workflow 
of medical imaging for diagnosis of 
cancer (e.g. X-ray, CT, MRI, PET, CBCT, 
ultrasound) 

 

Comparison Usual care (no AI) 
Alternative AI models /applications 
/approaches 
 

No comparator 

Outcomes  Primary outcomes(s): 
• Safety/harm outcomes  
• Patient care/outcomes (e.g. 

recovery time, need for further 
intervention) 

• Performance outcomes (e.g. time 
to diagnosis, time to treatment, 
time to discharge)  

• Clinical outcomes (e.g. diagnostic 
performance /classification 
/accuracy) 

• Economic outcomes 
• Equity (e.g. bias) 

 

 

Study design Primary (comparative) studies, full 
economic evaluations, modelling studies 
with real world data 
 

Secondary/tertiary 
research,  
Commentaries, Editorials, 
partial economic 
evaluations, case reports 
 

Countries OECD countries pre-1974 Non-OECD countries or 
post 1974 membership 

Language of 
publication  

English  

Publication date Papers published since 2018  
Publication type  Published and preprint  
Other 
considerations 

Commercially available AI models and 
those that had previously been 
developed 

AI models specifically for 
the study 
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6.2.3 Data extraction 

Data extracted was conducted by a single reviewer and was consistency checked by a 
second reviewer. Information extracted includes: 
 

- Citation  
- Study design 
- Intervention (AI model) 
- Comparator 
- Study aim 
- Data collection methods and dates 
- Outcomes reported 
- Sample size 
- Participants 
- Dataset details 
- Cancer type 
- Imaging technique 
- Key findings 
- Notes 

 
 
6.2.4 Quality appraisal 

The QUADAS-2 tool and the QUADAS-C extension tool were used to assess the 
methodological quality of each included study. The QUADAS-2 tool is used to assess the 
quality of diagnostic accuracy studies, however it is not well suited to studies that have 
multiple index tests (comparators), as such, the QUADAS-C tool was also used in order to 
account for the comparative nature of the included studies. 
 
Quality assessment was undertaken by a single reviewer, with verification of all judgements 
by a second reviewer. Any discrepancies were discussed and resolved amongst the review 
team. The results of quality appraisals for individual studies can be seen in section 7.3. 
Although some studies were rated as having a low risk of bias, the majority of included 
studies had some methodological limitations.  
 
6.2.5 Synthesis 

A narrative synthesis was conducted reporting results from all included studies in the in-
depth synthesis.  
 
6.2.6 Assessment of body of evidence    

An assessment of the overall body of evidence was made based on the relevance of the 
available evidence in addressing the review question and sub-questions, the amount and 
quality of the evidence, the magnitude and direction of effects and consistency in the 
findings, and clinical heterogeneity. 
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7. EVIDENCE 

7.1 Search results and study selection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Records identified from*: 
Databases (n = 21,403) 
 

Records removed before 
screening: 

Duplicate records removed  
(n = 8,091) 
Records removed for other 
reasons (n = 7,342) 

Records screened at title and 
abstract 

(n = 5,970) 

Records excluded 
(n = 5,330) 

Records screened at full text 
(n = 640) 

Records excluded (n = 527) 
 

Wrong population(n = 225) 
Wrong intervention (n = 104) 
Wrong outcome (n = 75) 
Wrong publication type (n = 
13) 
Wrong design (n = 73) 
Wrong country (n = 26) 
No access (n = 11) 
 

Records included in map 
(n = 92) 

Ongoing trials 
(n= 21) 

 

Identification of studies via databases  

Id
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In
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Studies included in the synthesis 
(n = 28) 

Ongoing trials  
(n= 21) 

Records excluded (n = 64) 
 
AI tool developed for the 
study (n=52) 
Other cancer type (n=12) 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.11.09.23298257doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.09.23298257
http://creativecommons.org/licenses/by-nd/4.0/


 

RR0008_Artificial intelligence in cancer diagnosis_November 2023 43 

 
7.2 Data extraction  
 
Table 6: Summary of included studies 

Citation 
(Country) Study Details Participants & setting Key findings Observations/notes 

Breast Cancer 
Calisto et al 
(2022). 
BreastScreeni
ng-AI: 
Evaluating 
medical 
intelligent 
agents for 
human-AI 
interactions. 
Artificial 
Intelligence in 
Medicine, 127, 
102285. 
 
(Portugal) 

Study Design: Mixed method 
(Retrospective) 
 
Intervention: BreastScreening-AI. A 
DenseNet model (Deep neural 
network) (previously developed) + 
clinician  
 
Comparator: Human (clinician) only  
 
Study aim: To quantitatively and 
qualitatively assess the proposed 
design principles that the 
BreastScreening-AI system embodies 
and to understand how these 
principles would fare in practice 
 
Data collection methods and dates: 
data retrieved from database 
containing 338 multi-modal image 
cases. Qualitative data collected 
using questionnaire. No dates stated 
 
 
Outcomes reported:  

• Performance accuracy 
(number of false-positives 
and false-negatives)  

• Diagnostic accuracy 
(precision and recall) 

• Time performance 
(diagnostic time)  

• User expectations 
(qualitative) 

Sample size: 289 patients  
 
Participants: 45 clinicians recruited on a 
volunteer basis 
 
Dataset details: BreastScreening was fixed 
to operate on a limited subset of 289 
classified patients from the collected dataset 
at Hospital Prof. Doutor Fernando Fonseca 
(HFF). The dataset were divided into three 
distinct patient types: P1 with low severity, 
i.e., BI-RADS ≤ 1; P2 with medium severity, 
i.e., 1 < BI-RADS ≤ 3; and P3 with high 
severity, i.e., BI-RADS > 3.  
 
Cancer type: Breast cancer 
 
Imaging technique: Mammography, 
ultrasound, and MRI 
 
 

Primary Findings: 
Performance accuracy with the proposed AI 
integration was found to be superior in comparison 
with the performance without integration.  
 
With AI: The classification accuracy of clinicians 
with AI recommendations was 71% for the number 
of True-Positives. On the other hand, the number 
of False-Negatives was 2% and the number of 
False-Positives was 27%, only. The Provided 
value was most accurate in classifying low (BI-
RADS < 2) and high (BIRADS ≥ 4) severity cases. 
 
Without AI: The classification accuracy of 
clinicians was just 40% for the number of True-
Positives. On the other hand, the number of False-
Negatives was 6% and the number of False-
Positives was 54%. The Provided value was most 
accurate in classifying high (BI-RADS ≥ 4) severity 
cases. 
 
Diagnostic accuracy was found to be higher with 
the AI assistant compared to without the assistant: 
mean values of (M = 19.2, SD = 12.81) vs (M = 
3.6, SD = 4.03). Mean and standard deviation with 
and without the assistant were (M = 0.66, SD = 
0.34) and (M = 0.62, SD = 0.27) for the Precision 
and Recall, respectively. 
 
Time performance: clinicians took 31% less 
diagnostic time with the assistant (M = 308 s, SD 
= 57.03 s) in comparison with no assistance (M = 
377 s, SD = 44.56 s). 
 
Additional Findings: 

It is unclear from the 
study the time periods 
the dataset were 
retrieved  
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Citation 
(Country) Study Details Participants & setting Key findings Observations/notes 

• Inter-variability and intra-
variability 

 
 
 

User expectations: From the DOTS 
questionnaire, 98% of the 45 clinicians answered 
that they do understand what the system is 
thinking. Also, 93% of the clinicians trust the 
system capability. Finally, 91% accept and prefer 
the AI setup.  
 
Inter-variability and intra-variability:  
On patients with Low severities, the Inter-
Variability improved with the introduction of the AI 
assistant (CV inter = 46.69%) in comparison with 
no AI (CV inter = 57.69%). A total of 11% 
improvement. For classified patients with Medium 
severities, the improvement was of 3.28% with the 
introduction of AI. In terms of classified patients 
with High severities, the improvements were of 
34.10%. 
For the Intra-Variability, the results showed that all 
groups improved their results with the introduction 
of AI. More precisely, Interns improved on the AI 
setup (CV inter = 29.28%) by a 6.65% in 
comparison with no AI (CV inter = 35.93%). From 
the group of Juniors, the improvements were even 
higher. With a 23.66% improvement, the variability 
of Juniors was reduced from a no AI setup (CV 
intra = 43.95%) to the AI setup (CV intra = 
20.29%). On the same hand, Middles reduced 
their variability by a 14.58%. Finally, Seniors 
reduced the variability to a 19.64%. 
 

Fujioka et al 
(2021). Deep-
learning 
approach with 
convolutional 
neural network 
for 
classification 
of maximum 
intensity 
projections of 

Study Design: Retrospective 
observational study 
 
Intervention: CNN models 
constructed to calculate the 
probability of malignancy of an image 
using Xception, InceptionV3, 
InceptionResNetV2, DenseNet121, 
DenseNet161, and NASNetMobile 
(previously developed) 
 

Sample size: 286  
 
Participants: Patients who underwent DCE 
breast MRI at a hospital from January 2014 
to December 2018 and were diagnosed as 
having normal, benign, or malignant lesions 
were eligible for enrolment in the study  
 
Dataset details: Dataset obtained from 
patients who underwent DCE breast MRI at 
a hospital from January 2014 to December 

Primary Findings: The CNN models showed a 
mean AUC of 0.830 (range, 0.75–0.90). The best 
model was InceptionResNetV2. This model, 
Reader 1, and Reader 2 had sensitivities of 
74.5%, 72.3%, and 78.7%; specificities of 96.0%, 
88.0%, and 80.0%; and AUCs of 0.90, 0.82, and 
0.85, respectively. No significant difference arose 
between the CNN models and human readers (p > 
0.125). 
 
 

Both readers 1 and 2 
blindly evaluated images.  
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Citation 
(Country) Study Details Participants & setting Key findings Observations/notes 
dynamic 
contrast-
enhanced 
breast 
magnetic 
resonance 
imaging. 
Magnetic 
Resonance 
Imaging, 75, 1-
8. 
 
 
(Japan)  

Comparator: Human readers (a 
breast surgeon and a radiologist) 
 
Study aim: To assess the diagnostic 
performance of deep learning (DL) 
with convolutional neural networks 
(CNN) compared with that of human 
readers in differentiating between 
benign and malignant lesions on 
maximum intensity projection (MIP) 
images of dynamic contrast-enhanced 
(DCE) breast MRIs. 
 
Data collection methods and dates: 
Data retrieved from database of 
radiology reports and clinical records 
 
Outcomes reported:  

• Diagnostic performance 
(AUC, sensitivity, specificity) 

 
 

2018 and were diagnosed as having normal, 
benign, or malignant lesions. For the training 
and validation phase, a total set of 286 
images (31 normal, 75 benign, and 180 
malignant cases) were used. For the test 
phase, a total of 72 images (12 normal, 13 
benign, and 47 malignant cases) were used. 
 
Cancer type: Breast cancer  
 
Imaging technique: Dynamic contrast-
enhanced breast magnetic resonance 
imaging (MRI) 
 

Goto et al 
(2023). Use of 
a deep 
learning 
algorithm for 
non-mass 
enhancement 
on breast MRI: 
comparison 
with 
radiologists’ 
interpretations 
at various 
levels. 
Japanese 
Journal of 
Radiology, 1-
10. 
 

Study Design: Retrospective 
observational study 
 
Intervention: Deep learning 
algorithm using pretrained Residual 
Networks 50 (ResNet50) architecture 
(previously developed). 
 
Comparator: Human readers (three 
radiologists) 
 
Study aim: To evaluate the 
diagnostic performance of deep 
learning using the Residual Networks 
50 (ResNet50) neural network 
constructed from different 
segmentations for distinguishing 
malignant and benign non-mass 
enhancement (NME) on breast 

Sample size: 84 participants 
 
Participants: 84 women with 86 lesions (51 
malignant and 35 benign) presenting NME 
on breast MRI 
 
Dataset details: Data were collected by 
reviewing the MRI reports in the electronic 
medical records at a university hospital 
between March 2010 and March 2013 
 
Cancer type: Breast cancer  
 
Imaging technique: MRI 
 

Primary Findings: The ResNet50 model from 
precise segmentation achieved diagnostic 
accuracy equivalent [area under the curve (AUC) 
= 0.91, 95% confidence interval (CI) 0.90, 0.93] to 
that of a highly experienced radiologist (AUC = 
0.89, 95% CI 0.81, 0.96; p = 0.45). The model 
from rough segmentation showed diagnostic 
performance equivalent to a board-certified 
radiologist (AUC = 0.80, 95% CI 0.78, 0.82 vs. 
AUC = 0.79, 95% CI 0.70, 0.89, respectively). 
Both ResNet50 models from the precise and 
rough segmentation exceeded the diagnostic 
accuracy of a radiology resident (AUC = 0.64, 
95% CI 0.52, 0.76) 
 
 

All readers were blinded 
to the mammography 
and ultrasound findings, 
initial interpretation of 
NME, and final diagnosis. 
Readers were informed 
only of the lesion location 
and patient's age. 
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(Japan)  

magnetic resonance imaging (MRI) 
and conduct a comparison with 
radiologists with various levels of 
experience 
 
Data collection methods and dates: 
Data were collected by reviewing the 
MRI reports in the electronic medical 
records at a university hospital 
between March 2010 and March 2013 
 
Outcomes reported:  

• Diagnostic performance 
(sensitivity, specificity, 
accuracy, AUC) 

 
 

Heller et al 
(2021). Can an 
artificial 
intelligence 
decision aid 
decrease 
false-positive 
breast 
biopsies?. 
Ultrasound 
Quarterly, 
37(1), 10-15. 
 
 
(USA) 

Study Design: Retrospective 
observational study  
 
Intervention: The Koios DS for 
Breast Study Tool core engine, which 
uses a deep learning algorithm that 
characterises sonographically 
visualised breast lesions 
(commercially available) + human 
reader 
 
Comparator: Human readers (two 
radiologists) only 
 
Study aim: To evaluate the effect of 
an AI support system on breast 
ultrasound diagnostic accuracy 
 
Data collection methods and dates: 
Data were collected from institutional 
electronic medical records from June 
2017 to January 2019 
 

Sample size: 200 sonological lesions 
 
Participants: Not stated. 200 sonological 
lesions (155 benign and 45 malignant) were 
randomly selected. 
 
Dataset details: Data were collected from 
institutional electronic medical records for all 
breast biopsies performed in women from 
June 2017 to January 2019 
 
Cancer type: Breast cancer  
 
Imaging technique: Ultrasound 
 

Primary Findings: There was no significant 
difference in overall accuracy (73 vs 69.8%), NPV 
(100% vs 98.5%), PPV (45.5 vs 42.4%), sensitivity 
(100% vs 96.7%), and specificity (65.2 vs 61.9; P 
= 0.118–0.409) when comparing AI with pooled or 
individual reader assessment.  
Artificial intelligence was more accurate than 
readers for irregular shape (74.1% vs 57.4%, P = 
0.002) and less accurate for round shape (26.5% 
vs 50.0%, P = 0.049). Artificial intelligence 
improved diagnostic accuracy for reader-rated 
low-confidence lesions with increased PPV 
(24.7% AI vs 19.3%, P = 0.004) and specificity 
(57.8% vs 44.6%, P = 0.008). 
 
 

The two readers were 
blinded to clinical history 
and pathology results as 
well as to overall 
malignant versus benign 
lesion proportions in the 
study set. 
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Outcomes reported: Diagnostic 
accuracy (accuracy, negative 
predictive value (NPV), positive 
predictive value (PPV), sensitivity, 
specificity)  
 

Jiang et al 
(2021). 
Artificial 
intelligence 
applied to 
breast MRI for 
improved 
diagnosis. 
Radiology, 
298(1), 38-46. 
 
 
(USA)  

Study Design: Retrospective 
observational study  
 
Intervention: QuantX (AI software) + 
human readers  
 
Comparator: Human readers (19 
radiologists) alone  
 
Study aim: To evaluate whether the 
diagnostic performance of radiologists 
in the differentiation of cancer from 
noncancer at dynamic contrast 
material–enhanced (DCE) breast MRI 
is improved when using an AI system 
compared with conventionally 
available software 
 
Data collection methods and dates: 
Data were collected from an 
independent breast DCE MRI 
database and from three different 
medical institutions. Dates not stated  
 
 
Outcomes reported:  

• Reader diagnostic 
performance (AUC, 
sensitivity, specificity) 

 
 

Sample size: 111 participants 
 
Participants: 111 women (54 malignant and 
57 non-malignant lesions)  
 
Dataset details: Data were collected from 
an independent breast DCE MRI database 
and from three different medical institutions. 
Cases were accrued from patients 
presenting with the following clinical 
indications: high-risk screening (40%), 
diagnostic imaging work-up (21%), and 
evaluation of the extent of known disease 
(39%). 
 
Cancer type: Breast cancer  
 
Imaging technique: Dynamic contrast 
material–enhanced (DCE) MRI 
 

Primary Findings: The average AUC of all 
readers improved from 0.71 to 0.76 (P = 0.04) 
when using the AI system. The average sensitivity 
improved when Breast Imaging Reporting and 
Data System (BI-RADS) category 3 was used as 
the cut point (from 90% to 94%; 95% CI for the 
change: 0.8%, 7.4%) but not when using BI-RADS 
category 4a (from 80% to 85%; 95% CI: 20.9%, 
11%). The average specificity showed no 
difference when using either BI-RADS category 4a 
or category 3 as the cut point (52% and 52% [95% 
CI: 27.3%, 6.0%], and from 29% to 28% [95% CI: 
26.4%, 4.3%], respectively). 
 
 

 

Lo Gullo et al 
(2020). 
Improved 
characterizatio

Study Design: Retrospective 
 
Intervention: Radiomics + Machine 
learning model (previously developed) 

Sample size: 96 
 
Participants: BRCA-positive patients who 
had an MRI from November 2013 to 

Primary Findings: Consensus BI-RADS 
classification assessment by the radiologists 
achieved a diagnostic accuracy of 53.4%, 
sensitivity of 75% (30/40), specificity of 42.1% 

Radiologists were 
blinded to the final 
histopathological 
diagnoses and prior or 
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n of sub-
centimeter 
enhancing 
breast masses 
on MRI with 
radiomics and 
machine 
learning in 
BRCA 
mutation 
carriers. 
European 
radiology, 30, 
6721-6731. 
 
(USA) 
 

 
Comparator: Human readers (two 
radiologists) 
 
Study aim: To investigate whether 
radiomics features extracted from 
MRI of BRCA-positive patients with 
sub-centimeter breast masses can be 
coupled with machine learning to 
differentiate benign from malignant 
lesions using model-free parameter 
maps. 
 
Data collection methods and dates: 
Data on consecutive patients with 
genetic testing results available and 
who had an MRI from November 
2013 to February 2019 that led to a 
biopsy or a short-term follow-up, were 
collected from the Department of 
Radiology database. 
 
Outcomes reported:  

• Diagnostic accuracy  
• Sensitivity 
• Specificity 
• PPV 
• NPV 

 
 

February 2019 that led to a biopsy (BI-RADS 
4) or imaging follow-up (BI-RADS 3) for sub-
centimeter lesions 
 
Dataset details: Data on consecutive 
patients with genetic testing results available 
and who had an MRI from November 2013 to 
February 2019 that led to a biopsy or a short-
term follow-up, were collected from the 
Department of Radiology database. 
 
Cancer type: Breast cancer  
 
Imaging technique: MRI 
 

(32/76), PPV of 40.5% (30/74), and NPV of 76.2% 
(32/42). The machine learning model combining 
five parameters (age, lesion location, GLCM-
based correlation from the pre-contrast phase, 
first-order coefficient of variation from the 1st post-
contrast phase, and SZM-based gray level 
variance from the 1st post-contrast phase) 
achieved a diagnostic accuracy of 81.5%, 
sensitivity of 63.2% (24/38), specificity of 91.4% 
(64/70), PPV of 80.0% (24/30), and NPV of 82.1% 
(64/78). 
 
 
 

subsequent conventional 
and MRI imaging  

Mango et al 
(2020). Should 
we ignore, 
follow, or 
biopsy? 
Impact of 
artificial 
intelligence 
decision 
support on 
breast 

Study Design: Retrospective 
observational study  
 
Intervention: AI decision support 
system - Koios DS for Breast system 
(previously developed) 
 
Comparator: Human readers (15 
physicians) 
 

Sample size: 900 
 
Participants: 900 women (900 breast 
lesions – 470 benign and 430 malignant) 
with breast lesions on US images acquired 
between June 2004 and June 2016 
 
Dataset details: Data were collected from 
900 women (900 breast lesions – 470 benign 
and 430 malignant) with breast lesions on 

Primary Findings: Mean reader AUC for cases 
reviewed with US only was 0.83 (95% CI, 0.78–
0.89); for cases reviewed with US plus DS, mean 
AUC was 0.87 (95% CI, 0.84–0.90). PLR for the 
DS system was 1.98 (95% CI, 1.78–2.18) and was 
higher than the PLR for all readers but one. 
Fourteen readers had better AUC with US plus DS 
than with US only. Mean Kendall τ-b for US-only 
interreader variability was 0.54 (95% CI, 0.53–
0.55); for US plus DS, it was 0.68 (95% CI, 0.67–
0.69). Intrareader variability improved with DS; 

All 900 cases were 
reviewed twice, in two 
sessions (900 cases per 
session) separated by a 
4-week washout period. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.11.09.23298257doi: medRxiv preprint 

https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://link.springer.com/article/10.1007/s00330-020-06991-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162774/
https://doi.org/10.1101/2023.11.09.23298257
http://creativecommons.org/licenses/by-nd/4.0/


 

RR0008_Artificial intelligence in cancer diagnosis_November 2023 49 

Citation 
(Country) Study Details Participants & setting Key findings Observations/notes 
ultrasound 
lesion 
assessment. 
AJR. American 
journal of 
roentgenology, 
214(6), 1445. 
 
(USA) 

Study aim: To assess the impact of 
AI-based decision support (DS) on 
breast US lesion assessment. 
 
Data collection methods and dates: 
Data were collected from screening 
mammography recalls and scheduled 
biopsies from over 20 U.S. institutions 
with identifying information, including 
institution, removed during 
anonymisation. Data were collected 
from images acquired between June 
2004 and June 2016 
 
Outcomes reported:  

• Sensitivity 
• Specificity  
• AUC 

 

US images acquired between June 2004 and 
June 2016 from 20 institutions  
 
Cancer type: Breast cancer  
 
Imaging technique: Ultrasound 
 

class switching (defined as crossing from BI-
RADS category 3 to BI-RADS category 4A or 
above) occurred in 13.6% of cases with US only 
versus 10.8% of cases with US plus DS (p = 0.04). 
 

O'Connell et al 
(2022). 
Diagnostic 
performance 
of an artificial 
intelligence 
system in 
breast 
ultrasound. 
Journal of 
ultrasound in 
medicine, 
41(1), 97-105. 
 
 
(USA/Italy) 

Study Design: Prospective 
observational study  
 
Intervention: S-Detect for Breast AI 
program (previously developed) 
 
Comparator: Human readers (10 
radiologists) 
 
Study aim: To study the performance 
of an AI programme designed to 
assist radiologists in the diagnosis of 
breast cancer, relative to measures 
obtained from conventional readings 
by radiologists 
 
Data collection methods and dates: 
Data were collected from subjects 
prospectively enrolled at both the 
University of Rochester and 
University Hospital Palermo during 
the timeframe 2018-2019. 

Sample size: 299 
 
Participants: 299 patients whose standard-
of-care breast ultrasound revealed at least 
one suspicious lesion, and who were 
recommended to have either a biopsy or 
biannual ultrasound imaging follow-up (150 
subjects were prospectively enrolled at the 
University of Rochester and 149 subjects 
were prospectively enrolled at the University 
Hospital Palermo, Italy during the timeframe 
2018–2019). 
 
Dataset details: Dataset derived from a 
curated, anonymised group of 299 breast 
ultrasound images that contained at least 
one suspicious lesion and for which a final 
diagnosis was independently determined. 
 
Cancer type: Breast cancer  
 
Imaging technique: Ultrasound 

Primary Findings: The concordance rate 
between S-Detect™ for Breast and the readers 
was significantly (P <0.05) non-inferior to the 
concordance rate among readers in shape, 
orientation, margin, and posterior classification. 
The sensitivity of S-Detect™ for Breast and the 
radiologists was 0.81 and 0.70, respectively. The 
specificity of S-Detect™ and the radiologists was 
0.83 and 0.76, respectively. The accuracy of S-
Detect™ for Breast and the radiologists was 0.82 
and 0.73, respectively.  
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Outcomes reported:  

• Sensitivity 
• Specificity 
• Accuracy  
• Concordance rate 

 

 

Pacilè et al 
(2020). 
Improving 
breast cancer 
detection 
accuracy of 
mammography 
with the 
concurrent use 
of an artificial 
intelligence 
tool. 
Radiology: 
Artificial 
Intelligence, 
2(6), e190208. 
 
(USA) 

Study Design: Retrospective 
observational study (fully 
crossed/counterbalance design) 
 
Intervention: Human readers + AI 
(MammoScreen V1; Therapixel, Nice, 
France) – previously developed  
 
Comparator: Human readers (14 
radiologists)  
 
Study aim: To evaluate the benefits 
of an AI–based tool for two-
dimensional mammography in the 
breast cancer detection process. 
 
Data collection methods and dates: 
Data were retrospectively collected 
over a 3-year period (2013 and 2016)   
 
Outcomes reported:  

• AUC 
• Sensitivity 
• Specificity 
• Reading time  

Sample size: 240 
 
Participants: Only examinations from 
women presenting for screening without 
clinical symptoms were included. 
 
Dataset details: The final selected dataset 
included 240 patient cases (average age, 59 
years; range, 37–85 years) with 80 true-
positive, 40 false-negative, 80 true-negative, 
and 40 false-positive cases. 
 
Cancer type: Breast cancer  
 
Imaging technique: Mammography 
 

Primary Findings: The average AUC across 
readers was 0.77 (95% CI: 0.72, 0.81) without AI 
and 0.80 (95% CI: 0.75, 0.84) with AI. The 
average difference in AUC was 0.03 (95% CI: 
0.002, 0.06, P = 0.035).  
 
Average sensitivity was increased by 0.03 when 
using AI support (P = 0.021). Average specificity 
showed a lower level of improvement (P = 0.634). 
 
Reading time changed dependently to the AI-tool 
score. For low likelihood of malignancy (< 2.5%), 
the time was about the same in the first reading 
session and slightly decreased in the second 
reading session. For higher likelihood of 
malignancy, the reading time was on average 
increased with the use of AI. 
On the first reading session, the average 
reading time per case was 62.79 seconds for the 
unaided readings (95% CI: 60.77, 64.80) and 
71.93 seconds for the readings with the AI support 
(95% CI: 69.52, 74.33). The difference was 
statistically significant (P< 0.001). For the second 
reading session, the average reading time per 
case was 57.22 seconds for the unaided readings 
(95% CI: 55.10, 59.33) and 62.16 seconds for the 
readings with AI (95% CI: 60.04, 64.29). The 
difference was statistically significant (P < 0.001).  
 

Readers evaluated the 
cases independently, 
with an individually 
randomised order. They 
had no access to any 
information about the 
patient (e.g., previous 
mammography and other 
imaging examinations).  
 
There was a washout 
period of 4 weeks 
between the two reading 
sessions. 

Pinto et al 
(2021). Impact 
of artificial 
intelligence 
decision 

Study Design: Retrospective 
observational study  
 
Intervention: Human reader + AI 
CAD system (Transpara. version 

Sample size: 190 
 
Participants: 190 DBT examinations (from 
190 women) consisting of 75 malignant 
lesions, 25 benign lesions, and 90 normal 

Primary Findings: The examination-based 
reader-averaged AUC was higher when 
interpreting results with AI support than when 
reading unaided (0.88 [95% CI: 0.84, 0.92] vs 0.85 
[95% CI: 0.80, 0.89], respectively; P = 0.01).  

An enriched dataset (with 
malignant examinations) 
was used in this study.  
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support using 
deep learning 
on breast 
cancer 
screening 
interpretation 
with single-
view wide-
angle digital 
breast 
tomosynthesis. 
Radiology, 
300(3), 529-
536. 
 
 
(Netherlands) 

1.6.0; ScreenPoint Medical) – 
previously developed  
 
Comparator: Human readers (14 
radiologists) 
 
Study aim: To assess whether 
adding a deep learning–based AI 
system to single-view DBT image 
reading may allow for an 
improvement in the reading time and 
in the performance of radiologists for 
breast cancer detection. 
 
Data collection methods and dates: 
The dataset for this study was 
selected from all clinical DBT 
examinations performed at Radboud 
University Medical Center between 
June 2016 and February 2018. 
 
Outcomes reported:  

• AUC 
• Sensitivity 
• Specificity 
• Reading time  

 

examinations. Patients 40 years of age or 
older who had undergone a bilateral imaging 
protocol because of recall from screening or 
clinical concerns were included.  
 
Dataset details: The dataset for this study 
was selected from all clinical DBT 
examinations performed at Radboud 
University Medical Center between June 
2016 and February 2018, and contained a 
total of 4750 DBT studies from distinct 
women  
 
Cancer type: Breast cancer  
 
Imaging technique: Digital breast 
tomosynthesis (DBT) 
 

The average sensitivity increased with AI support 
(64 of 74, 86% [95% CI: 80%, 92%] vs 60 of 74, 
81% [95% CI: 74%, 88%]; P = 0.006), whereas no 
differences in the specificity (85 of 116, 73.3% 
[95% CI: 65%, 81%] vs 83 of 116, 71.6% [95% CI: 
65%, 78%]; P = 0.48) or reading time (48 seconds 
vs 45 seconds; P = 0.35) were detected. 
 
The standalone per-examination AUC for the AI 
system was higher than that of the unaided 
reader-averaged AUC (0.90 [95% CI: 0.85, 0.94] 
vs 0.85 [95% CI: 0.80, 0.89], respectively; p = 
0.03). When compared with each individual 
unaided reader, the AI system AUC was higher 
than that of all except two readers (reader 1 
and reader 10), who had higher AUCs (0.90 and 
0.93, respectively) 

Tsochatzidis et 
al (2019). 
Deep learning 
for breast 
cancer 
diagnosis from 
mammograms
—a 
comparative 
study. Journal 
of Imaging, 
5(3), 37. 
 
(USA) 

Study Design: Retrospective 
observational (comparative) study  
 
Intervention: Deep convolutional 
neural networks (CNNs) – AlexNet, 
VGG, GoogLeNet/Inception, Residual 
Networks (ResNets) – previously 
developed  
 
Comparator: AI models above were 
compared amongst themselves 
 
Study aim: To investigate the 
performance of multiple deep 

Sample size: Not stated  
 
Participants: Not stated. The dataset used 
contained 400 mass ROIs. The curated 
breast imaging subset of DDSM contained 
10,239 mammographic images 
 
Dataset details: Two datasets were used.  
DDSM-400: This dataset consists of 400 
mass ROIs extracted from the Digital 
Database for Screening Mammography 
(DDSM) that was developed and used in a 
previous project. The selected dataset was 
enriched due to a further processing of the 

Primary Findings: CNNs trained under the fine-
tuning scenario achieved better performance 
compared to the ones trained from scratch.  
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convolutional neural networks (CNNs) 
in the context of computer-aided 
diagnosis of breast cancer  
 
Data collection methods and dates: 
The dataset consists of 400 mass 
ROIs extracted from the Digital 
Database for Screening 
Mammography (DDSM) that was 
developed and used in a previous 
project. Dates not stated  
 
Outcomes reported:  

• AUC 
• Classification accuracy  

 

ROIs, performed by expert radiologists, in 
order to acquire an accurate mass contour 
delineation using a semi-automatic 
segmentation method. 
CBIS-DDSM: This dataset is an updated and 
standardized version of DDSM. It contains 
10,239 mammographic images. For this 
study, only cases concerning masses where 
extracted totaling 1319 and 378 ROIs for 
training and testing respectively.  
 
Cancer type: Breast cancer 
 
Imaging technique: Mammography 
 

 
 
 
 
 

Uhlig et al 
(2018). Novel 
breast imaging 
and machine 
learning: 
predicting 
breast lesion 
malignancy at 
cone-beam CT 
using machine 
learning 
techniques. 
American 
Journal of 
Roentgenolog
y, 211(2), 
W123-W131. 
 
(Germany) 

Study Design: Prospective 
observational study  
 
Intervention: Five machine learning 
techniques (random forests, back 
propagation neural networks (BPN), 
extreme learning machines, support 
vector machines, and K-nearest 
neighbors) – previously developed  
 
Comparator: Human readers 
 
Study aim: To evaluate the 
diagnostic performance of machine 
learning techniques for malignancy 
prediction at breast cone-beam CT 
(CBCT) and to compare them to 
human readers. 
 
Data collection methods and dates: 
Data were collected from an earlier 
project comparing breast CBCT to 
other breast imaging modalities 

Sample size: 35 
 
Participants: Study participants included 
female patients who underwent breast CBCT 
imaging because of suspicious breast 
lesions (BI-RADS category 4 or 5) identified 
at mammography or ultrasound, according to 
the BI-RADS 5th edition, who had American 
College of Radiology (ACR) breast density 
type C or D, and who were older than 40 
years. This comprised 35 women (81 breast 
lesions: 45 malignant and 36 benign) 
 
Dataset details: The dataset for this study 
was selected from a subset of patients from 
an earlier project conducted from December 
2015 to October 2017.  
 
Cancer type: Breast cancer  
 
Imaging technique: Breast cone-beam CT 
(CBCT) 
 

Primary Findings: The diagnostic performance of 
the human readers was AUC of 0.84, sensitivity of 
0.89, and specificity of 0.72 for reader 1 and 
AUC of 0.72, sensitivity of 0.71, and specificity of 
0.67 for reader 2.  
Among the machine learning models, BPN 
provided superior AUC of 0.91 and specificity of 
0.82, whereas sensitivity was highest for random 
forest (0.8955). The AUC was significantly higher 
for BPN than for either reader 1 (p = 0.01) or 
reader 2 (p < 0.001). 
 
 

Both human readers 
were blinded to each 
other and 
to later diagnoses, and 
they assigned a BI-RADS 
score separately for each 
breast lesion 
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conducted from December 2015 to 
October 2017 
 
Outcomes reported:  

• Diagnostic performance 
(AUC, sensitivity, specificity) 

 
 

Vamvakas et 
al (2022). 
Breast Cancer 
Classification 
on 
Multiparametri
c MRI–
Increased 
Performance 
of Boosting 
Ensemble 
Methods. 
Technology in 
Cancer 
Research & 
Treatment, 21, 
153303382210
87828. 
 
(Greece) 

Study Design: Retrospective 
observational study  
 
Intervention: Four popular 
implementations of Decision 
Trees (DT) Boosting classifiers, 
namely Adaptive Boosting 
(AdaBoost), Gradient Boosting (GB), 
Extreme Gradient Boosting 
(XGBoost), and Light Gradient 
Boosting Machine (LightGBM) – 
previously developed  
 
Comparator: An SVM classifier was 
also trained and evaluated on the 
same feature subset to allow 
performance comparisons 
 
Study aim: To assess the utility of 
Boosting ensemble classification 
methods for increasing the diagnostic 
performance of multiparametric 
Magnetic Resonance Imaging 
(mpMRI) radiomic models, in 
differentiating benign and malignant 
breast lesions. 
 
Data collection methods and dates: 
Data were collected from a sample of 
breast MRI data obtained from a 
cohort of 293 female patients that had 
been consecutively examined at the 

Sample size: 140 
 
Participants: Female patients with mass-like 
lesions detected on mammography and/or 
ultrasonography  
 
Dataset details: The dataset included 
mpMR images of 140 female patients with 
mass-like breast lesions (70 benign and 70 
malignant), consisting of Dynamic Contrast 
Enhanced (DCE) and T2-weighted 
sequences, and the Apparent Diffusion 
Coefficient (ADC) calculated from the 
Diffusion Weighted Imaging (DWI) sequence. 
 
Cancer type: Breast cancer  
 
Imaging technique: Multiparametric MRI 
(mpMRI) 
 

Primary Findings:  
XGboost achieved the highest accuracy (Acc 
=0.88 [95% CI 0.84-0.92]) and overall 
performance (AUC =0.95 [95% CI 0.91-0.99]) 
followed by LGBM (Acc=0.87 [95% CI 0.83-0.91]/ 
AUC=0.94 [95% CI 0.90-0.98]), Adaboost 
(Acc=0.83 [95% CI 0.80-0.86] / AUC=0.90 [95% 
CI 0.87-0.93]), and GB (Acc=0.83 [95% CI 0.80-
0.86] / AUC =0.89 [95% CI 0.86-0.92]). The 
observed interindividual differences in overall 
performances of XGBoost and LGBM were 
statistically significantly higher than AdaBoost and 
GB. 
 
The SVM classification model yielded statistically 
significantly lower performance (Acc=0.84 [95% CI 
0.80-0.88] / AUC=0.88 [95% CI 0.84-0.92]) than 
XGBoost and LGBM, but this was found 
statistically comparable with the performances 
demonstrated by AdaBoost and GB. 
 
XGBoost has also achieved the highest sensitivity 
(Se=0.91 [95% CI 0.85-0.97]) and specificity 
(Sp=0.90 [95% CI 0.82-0.98]). Sensitivity and 
specificity metrics for the rest of the classification 
models were: LGBM Se=0.90 [95% CI 0.84–0.96] 
/ Sp =0.89 [95% CI 0.81–0.97], AdaBoost Se=0.83 
[95% CI 0.78–0.88] / Sp=0.82 [95% CI 0.75–0.89], 
GB Se =0.82 [95% CI 0.77–0.87] / Sp=0.80 [95% 
CI 0.73–0.87], SVM Se=0.80 [95% CI 0.77–0.88] / 
Sp =79 [95% CI 0.70–0.88]. 
 
 

Study authors noted that 
no power calculation for 
estimating the sample 
size selected for the 
study was done 
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researcher’s institution. No dates 
provided  
 
Outcomes reported:  

• Accuracy 
• Sensitivity 
• Specificity  
• AUC 

 
van Zelst et al 
(2020). 
Validation of 
radiologists’ 
findings by 
computer-
aided 
detection 
(CAD) 
software in 
breast cancer 
detection with 
automated 3D 
breast 
ultrasound: a 
concept study 
in 
implementatio
n of artificial 
intelligence 
software. Acta 
Radiologica, 
61(3), 312-
320. 
 
(Netherlands)  

Study Design: Retrospective 
observational study  
 
Intervention: AI model not stated. 
Computer-aided detection (CAD) 
software used, a commercially 
developed ABUS CAD software 
package (QVCAD, Qview Medical 
Inc., Los Altos, CA, USA) 
 
Comparator: Human readers (eight 
radiologists) 
 
Study aim: To investigate the effect 
of using computer-aided detection 
software to improve the performance 
of radiologists by validating findings 
reported by radiologists during 
screening with automated breast 
ultrasound. 
 
Data collection methods and dates: 
Data from a previously published 
multi-reader-multi-case (MRMC) 
observer study. Cases were extracted 
from a multi-institutional database 
containing ABUS examinations from 
715 women. Dates not provided  
 
Outcomes reported:  

• AUC 
• Partial AUC (pAUC) 

Sample size: 120 
 
Participants: 120 women with dense 
breasts that included 60 randomly selected 
normal exams, 30 exams with benign 
lesions, and 30 malignant cases (20 
mammography-negative). 
 
Dataset details: The final dataset consisted 
of 120 unilateral breast examinations (a total 
of 375 views) with 30 malignant cases, 30 
cases containing benign lesions, and 60 
normal cases with two years of negative 
follow-up 
 
Cancer type: Breast cancer 
 
Imaging technique: Automated three-
dimensional breast ultrasound (ABUS) 
 

Primary Findings: The overall difference in AUC 
was not statistically significant: 0.82 (95% 
CI=0.73–0.92) for unaided reading and 0.83 (95% 
CI=0.75–0.92) for reading after CAD validation 
(P=0.743). Validation by CAD improved the partial 
AUC for the interval within the specificity range of 
80%–100%.  
Partial AUC improved significantly from 0.13 (95% 
CI=0.10–0.15) to 0.14 (95% CI=0.12–0.17) 
(P=0.037) after CAD rejected mostly benign 
lesions and normal tissue scored BI-RADS 3 or 4.  
 
Additional Findings: Four cancers detected by 
readers were completely missed by computer-
aided detection and four other cancers were 
detected by both readers and computer-aided 
detection but falsely rejected due to technical 
limitations of our implementation of computer-
aided detection validation. Validation of computer-
aided detection discarded 42.6% 
of findings that were scored BI-RADS ≥ 3 by the 
radiologists, of which 85.5% were non-malignant 
findings. 
 

The authors 
acknowledged that the 
prevalence of both 
benign and malignant 
breast disease was 
artificially enhanced to 
increase the power of the 
study.   
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• Sensitivity 
• Specificity  

 
Prostate Cancer 

Akatsuka et al 
(2019). 
Illuminating 
clues of 
cancer buried 
in prostate MR 
image: deep 
learning and 
expert 
approaches. Bi
omolecules, 9(
11), p.673.  
 
 
(Japan) 

Study Design: Retrospective 
(Not clearly stated) 
 
Intervention: Previously developed 
Deep convolutional neural network 
(dCNN)(Xception) 
 
Comparator: Human readers 
(radiologists)  
 
Study aim: to compare the deep 
learning-focused regions of magnetic 
resonance (MR) images with 
cancerous locations identified by 
radiologists and pathologists. 
 
 
Data collection methods and dates: 
MR imaging at the Nippon Medical 
School Hospital (NMSH) between 
January 2012 and May 2018 
 
 
Outcomes reported:  

• Classification accuracy 
• Location comparison 

 

Sample size: 105 patients, 307 MRI images 
 
Participants: patients who underwent 
prostate MR imaging. Patients with history of 
prior radiation, surgery, or androgen-
deprivation therapies were excluded.  
 
Dataset details: Dataset obtained from a 
hospital in Japan 
 
Cancer type: Prostate cancer 
 
Imaging technique: MRI 
 

Primary Findings: 
Classification Using a Deep Neural Network 
An ROC curve for classification accuracy using 
10-fold cross validation yielded an average AUC 
of 0.90 (95% confidence interval (CI) 0.87–0.94). 
Result showed the case-level analysis for an 
average AUC of 0.93 (95% CI 0.87–0.99). In the 
case of the cancer images, 86.0% of the images 
were classified correctly, whereas 14.0% were 
misclassified. In the case of the non-cancer 
images, 78.3% were classified correctly, whereas 
21.7% were misclassified. 
 
Clinical Comparison of Cases Classified Using 
a Deep Neural Network 
The clinicopathological features of the cancer and 
non-cancer cases classified by the deep 
convolutional neural network were compared. The 
Gleason score was higher in the misclassified 
cases than in the classified cases (p = 0.03). 
There were no significant differences between the 
classified and misclassified cases with respect to 
age, PSA, TPV, PSAD, clinical T stage, 
pathological T stage, and other blood test data 
 
Additional Findings: 
Locational Comparison between Deep 
Learning-Focused Regions on MR Images and 
Expert-Identified Cancer Locations 
The deep learning-focused regions overlapped the 
radiologist-identified targets in 70.5% of the MR 
images (p < 0.001), the deep learning-focused 
regions overlapped genuine cancer locations in 
72.1% of the MR images (p < 0.001). In the 
remaining MR images, deep learning focused the 
following regions: transition zone (10.1%), 
peripheral zone (7.8%), and the others (region 

The radiologists were 
blind to all 
clinicopathological 
information 
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outside of prostate gland). Pathologists evaluated 
the deep leaning-focused regions in the non-
overlapping images and found that deep learning 
focused on following regions: dilated prostatic 
ducts, lymphocyte aggregation, and others 
(normal stroma and adipose tissue).  
 

Arslan et al 
(2023). Does 
deep learning 
software 
improve the 
consistency 
and 
performance 
of radiologists 
with various 
levels of 
experience in 
assessing bi-
parametric 
prostate 
MRI?. Insights 
into 
Imaging, 14(1)
, pp.1-10.  
 
 
(Turkey) 
 

Study Design: Retrospective (Not 
clearly stated) 
 
Intervention: Human + Commercially 
available DL software (Prostate AI, 
Version Syngo.Via VB60, Siemens 
Healthcare) 
 
Comparator: Human (four 
radiologists) alone 
 
Study aim: The aims of the study 
were twofold: First, to investigate 
whether the commercially available 
DL software increases the PI-RADS 
scoring consistency on bi-parametric 
MRI among radiologists with various 
experience levels; Second, to assess 
whether the DL software improves the 
performance of radiologists in 
identifying clinically significant 
prostate cancer (csPCa). 
 
Data collection methods and dates: 
Authors reviewed consecutive 
patients who underwent a prostate 
MRI scan due to suspicion of PCa or 
active surveillance between January 
2019 and December 2020.  
 
Outcomes  reported:  

• Inter-rater agreement 
• Performance identifying 

csPCa,  

Sample size: 153 men, 153 MRI’s 
 
Participants: patients having whole-mount 
pathology or biopsy for patients with a PI-
RADS ≥ 3 score assigned during routine 
clinical reading; having a prostate MRI scan 
obtained at 3 T without an endorectal coil 
following PI-RADS version 2; and ≥ 
18  months of follow-up without any clinical, 
laboratory, or imaging evidence of PCa for 
patients with a PI-RADS score ≤ 2.  
 
Dataset details: Data obtained from 
consecutive patients who underwent a 
prostate MRI scan due to suspicion of PCa 
(i.e., increased prostate-specific antigen or 
suspicious digital rectal examination) or 
active surveillance between January 2019 
and December 2020. 
 
Cancer type: Prostate cancer 
 
Imaging technique: MRI 
 

Primary Findings: 
 
The inter-rater agreement 
among the radiologist with and without the DL 
software 
Radiologists changed their initial PI-RADS scores 
in 1/153 (0.65%), 2/153 (1.3%), 0/153 (0%), and 
3/153 (1.9%) of the patients with the DL software. 
Fleiss’ kappa Score among the radiologists 
without the DL software was 0.39, equating to a 
fair agreement. Fleiss’ kappa Score among the 
radiologists increased from 0.39 to 0.40 with the 
DL software, not representing a signifcant 
diference (p=0.56). 
 
The performance of the radiologists 
in identifying csPCa with and without DL 
software 
The AUROCs of the experienced radiologist, less 
experienced radiologist 1 2, and less-experienced 
radiologist 3 without the DL software were 0.92 
(95% CI 0.88–0.96), 0.85 (95% CI 0.79–0.91), 
0.81 (95% CI 0.73–0.88), 0.78 (95% CI 0.70–
0.86). The AUROC of the standalone DL software 
was 0.76 (95% CI 0.67–0.84). The AUROCs of the 
experienced radiologist, less-experienced 
radiologist 1, less-experienced radiologist 2, and 
less-experienced radiologist 3 with the DL 
software were 0.92 (95% CI 0.88–0.96), 0.86 
(95% CI 0.81–0.92), 0.81 (95% CI 0.73–0.88), and 
0.79 (95% CI 0.71–0.87). 
 
The AUROCs of the experienced radiologist and 
less-experienced radiologist 1 were significantly 
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 higher than that of the DL software (p < 0.0001 
and p = 0.04). In contrast, the AUROCs of the 
remaining less-experienced radiologists 2 and 3 
did not significantly differ from that of the DL 
software (p = 0.63 and p = 0.23). The AUROCs of 
radiologists in identifying csPCa with and without 
the DL software did not differ for radiologists (p > 
0.05). 
 
 

Faiella et al 
(2022). 
Quantib 
prostate 
compared to 
an expert 
radiologist for 
the diagnosis 
of prostate 
cancer on 
mpMRI: a 
single-center 
preliminary 
study. Tomogr
aphy, 8(4), 
pp.2010-2019.  
 
 
(Italy) 

Study Design: Retrospective (Not 
clearly stated) 
 
Intervention: Human (inexperienced 
radiologist) + Previously developed AI 
software Quantib Prostate (Quantib 
B.V., Rotterdam, The Netherlands) 
 
Comparator: Human (expert 
radiologist)  
 
Study aim: To evaluate the clinical 
utility of an AI radiology solution, 
Quantib Prostate, for prostate cancer 
(PCa) lesions detection on 
multiparametric Magnetic Resonance 
Images (mpMRI). 
 
Data collection methods and dates: 
mpMRI exams collected from 2019 to 
2020 and seen by the same expert 
radiologist 
 
Outcomes reported:  

• Lesions identified 
• Sensitivity (number of true 

positives/(number of true 
positives + number of false 
positives)) 

• PPV (number of true 
negatives/(number of true 

Sample size: 108 patients with 108 mpMRI 
exams 
 
Participants: Three groups of patients were 
assessed: patients with positive mpMRI, 
positive target biopsy, and/or at least one 
positive random biopsy (group A, 73 
patients); patients with positive mpMRI and a 
negative biopsy (group B, 14 patients), and 
patients with negative mpMRI who did not 
undergo biopsy (group-C, 21 patients). 
 
Dataset details: Not stated 
 
Cancer type: Prostate cancer 
 
Imaging technique: Multi-parametric 
Magnetic Resonance Imaging (mpMRI) 
 

Primary Findings: 
Lesions found 
In group A, the expert radiologist found 96 lesions 
in 73 mpMRI exams; of them, 17.7% were 
PIRADS 3, 56.3% were PIRADS 4, and 26% were 
PIRADS 5. The AI-assisted radiologist found 121 
lesions; of them, 0.8% were PIRADS 3, 53.7% 
were PIRADS 4, and 45.5% were PIRADS 5. At 
biopsy, 33.9% of the lesions were ISUP 1, 31.4% 
were ISUP 2, 22% were ISUP 3, 10.2% were 
ISUP 4, and 2.5% were ISUP 5. Evaluating group 
A, the expert radiologist reached a sensitivity of 
71.7 and a PPV of 84.4%, while the AI-assisted 
radiologist reached a sensitivity of 92.3% and a 
PPV of 90.1%. 
 
Analyzing the cases which resulted in false 
negatives from expert radiologist evaluation and 
true positives from AI-assisted radiologist analysis 
(23 ROIs), 12 were ISUP 1, 7 were ISUP 2, 3 
were ISUP 3, and only 1 was ISUP 4. In group A, 
nine cases were false negatives for both the 
expert radiologist and AI-assisted radiologist (four 
ISUP 1 and five ISUP 2). In group B, the expert 
radiologist found 17 lesions in 14 mpMRI exams 
(47.1% PIRADS 3 and 52.9% PIRADS 4). The AI-
assisted radiologist found 14 lesions in the same 
14 mpMRI exams (71.4% PIRADS 3 and 28.6% 
PIRADS 4). Moreover, 21.4% were in the PZ and 
78.6% in the TZ. 

Radiologists were 
blinded to biopsy results 
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negatives + number of false 
positives)). 

 
 

In group C, the expert radiologist did not find any 
lesions. The AI-assisted radiologist found 37 
lesions in 21 patients; of them, 86.5% were 
PIRADS 3, and the rest were PIRADS 4; 
moreover, 32.4% were in the PZ and 67.6% in the 
TZ. 
 

Forookhi et al 
(2023). 
Bridging the 
experience 
gap in prostate 
multiparametri
c magnetic 
resonance 
imaging using 
artificial 
intelligence: A 
prospective 
multi-reader 
comparison 
study on inter-
reader 
agreement in 
PI-RADS v2. 
1, image 
quality and 
reporting time 
between 
novice and 
expert 
readers. Europ
ean Journal of 
Radiology, 161
, p.110749.  
 
(Italy) 

Study Design: A prospective 
observational study 
 
Intervention: Human + commercially 
available AI-assisted software 
(Quantib® Prostate) 
 
Comparator: Human (four novice 
readers) alone 
 
Study aim: To determine the impact 
of using a semi-automatic 
commercially available AI-assisted 
software (Quantib® Prostate) on inter-
reader agreement in PI-RADS scoring 
at different PI-QUAL ratings and 
grades of reader confidence and on 
reporting times among novice readers 
in multiparametric prostate MRI. 
 
Data collection methods and dates: 
consecutive patients were enrolled at 
a tertiary referral center between 
October 2021 and February 2022. 
 
Outcomes reported:  

• Inter-reader agreement 
• Receiver Operating Curve 

analysis 
• Reporting time, and Image 

quality and grade of 
confidence among readers 

 

Sample size: 200 patients, 200 scans 
 
Participants: The cohort underwent MRI 
examination for clinical suspicion for PCa 
due to either an increase from baseline PSA 
levels or positive DRE findings, as per 
clinical practice. 56 patients were excluded 
according to the following criteria: (a) 
patients in active surveillance (n = 34); (b) 
patients who had previously undergone 
radical prostatectomy or radiation therapy (n 
= 9); (c) prior diagnosis of PCa (n = 5); (d) 
incompatibility between imaging data and AI-
assisted software resulting from incorrect 
processing or loss of data during transfer 
from the local PACS server (n = 8). 
 
Dataset details: Dataset obtained from a 
tertiary referral Centre in Italy 
 
Cancer type: Prostate cancer  
 
Imaging technique: Multiparametric 
magnetic resonance imaging 
 

Primary Findings: 
Inter-reader agreement in PI-RADS scoring 
Novice readers with more experience (readers 2 
and 3) had lower kappa scores when using the AI-
assisted software, except for batch 4 for Reader 3 
where inter-reader kappa agreement improved 
from 0.29 to 0.46. On the contrary, less 
experienced novice readers (readers 1 and 4) 
showed statistically significant improvement (p < 
0.001) in inter-reader agreement with the 
software. Kappa scores for Reader 1 were higher 
in all batches, with an overall increase from 0.67 
to 0.74. Reader 4 showed improvements in 
batches 2 and 3, with kappa scores increasing 
from 0.55 to 0.62 and 0.54 to 0.59, respectively. In 
the re-evaluation of the 1st batch, a comparable 
trend was noted with agreement consistently 
higher in Readers 2 and 3 without the software, on 
the other hand, improvement with the software 
was noted in Readers 1 and 4. Overall, kappa 
scores ranged from 0.29 to 0.81 without Quantib® 
and from 0.27 to 0.77 with Quantib®. Subgroup 
analysis revealed a similar increase in overall 
inter-reader agreement with AI-assisted reading 
among less experienced novice readers. In the 
peripheral zone, kappa coefficient values rose 
from 0.53 to 0.60 and from 0.37 to 0.42 for 
Readers 1 and 4, respectively. In the transition 
zone, the scores similarly improved from 0.28 to 
0.43 and from 0.48 to 0.49 for the two readers.  
 
Receiver Operating Curve analysis 
Among less experienced readers, Quantib® 
resulted in improved diagnostic accuracy in all 

Readers were blinded to 
expert and individual 
reports. 
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batches with Reader 1 and in batches 1, 3, 5 and 
overall, in Reader 4; AUC ranges rose from 0.73 
to 0.81, without the software, to 0.75 to 0.86, with 
the software. More experienced readers achieved 
a higher diagnostic accuracy without Quantib®. 
Overall sensitivity findings were in line with the 
pattern observed with AUCs, rising from 51.8 % to 
65.8 % and from 59.6 % to 61.4 % in readers 1 
and 4, respectively. Overall specificity decreased 
in all instances of software use, ranging from 94.3 
% to 98.7 %, without the software, to 86.8 to 98.4 
%, with the software. In the peripheral zone, when 
using the software, AUCs improved from 0.76 to 
0.82 in Reader 1 and from 0.77 to 0.78 in Reader 
4. In the transition zone, with the software, AUCs 
increased from 0.68 to 0.79 for Reader 1 but 
stayed constant at 0.86 for Reader 4. The AUCs 
for Readers 2 and 3 decreased both in the 
transition zone and in peripheral zones with the 
software. 
 
Reporting time 
The results showed statistically significant 
differences (p < 0.001) between reporting times. 
Evaluation times were longer amongst all readers 
when reporting with Quantib®. Total mean reader 
times ranged from a minimum of 123.81 +/- 51.25 
sec to a maximum of 189.14 +/- 67.08 sec without 
Quantib®, and from 697.44 +/- 98.88 sec to 
792.47 +/- 122.37 sec with Quantib®. The 
uploading time (tUp) was evidently shown to be 
the most time-consuming step in the workflow 
followed by time for segmentation (tSeg) and time 
for lesion identification (tID). 
 
Image quality and grade of confidence among 
readers 
In all four readers, overall inter-reader agreement 
was higher with greater PI-QUAL scores and 
grades of confidence. Kappa coefficient values 
were higher with Quantib® at all PI-QUAL scores 
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in Readers 1 and 4, as well as at PI-QUAL 3 in 
Reader 2. Quantib® had the same effect on these 
three readers at lower levels of confidence, 
especially at grade 3. Inter-reader agreements on 
PI-QUAL scores were 0.15 (slight) for Reader 1 vs 
Reader 2; 0.13 (slight) for Reader 1 vs Reader 3; 
0.02 (slight) for Reader 1 vs Reader 4; 0.59 for 
Reader 2 vs Reader 3 (moderate); 0.09 (slight) for 
Reader 2 vs Reader 4; 0.11 (slight) for Reader 3 
vs Reader 4. 
 

Patsanis et al 
(2023). A 
comparison of 
Generative 
Adversarial 
Networks for 
automated 
prostate 
cancer 
detection on 
T2-weighted 
MRI. Informati
cs in Medicine 
Unlocked, 39, 
p.101234.  
 
 
(Norway) 

Study Design: Retrospective (Not 
clearly stated) 
 
Intervention: Six previously 
developed relevant 2D GANs were 
selected for investigation: f-AnoGAN, 
HealthyGAN, StarGAN, StarGAN-v2, 
FP-GAN and DeScarGAN. For each 
model, the code was publicly 
available. 
 
Comparator: AI models were 
compared amongst themselves 
 
Study aim: To assess the potential of 
several Generative Adversarial 
Networks (GAN) models for the task 
of PCa detection on T2W MRI.  
 
Data collection methods and dates: 
Transverse T2W MR images from two 
datasets (N = 1160) were used in this 
study: an in-house collected dataset 
(N = 961) and the publicly available 
PROSTATEx Challenge training 
dataset (N = 199). The in-house 
dataset consisted of diagnostic MR 
images from men enrolled in the 
standardized prostate cancer pathway 
at St. Olavs Hospital, Trondheim 

Sample size: 1,160 patients, 1,160 MRI 
images 
 
Participants: Men enrolled in the 
standardized prostate cancer pathway due to 
suspicion of prostate cancer 
 
Dataset details: One publicly available 
dataset (from the Netherlands) and an in-
house dataset obtained from a hospital in 
Norway. 
 
Cancer type: Prostate cancer 
 
Imaging technique: MRI 
 

Primary Findings: 
 
All models except f-AnoGAN and StarGAN-v2 
performed best when trained on input images with 
a pixel spacing of 0.4 × 0.4 mm. FP-GAN 
performed best, with an AUC of 0.76 (95% CI: 
0.65–0.84). This was significantly better than the 
performance of f-AnoGAN and StarGAN-v2, but 
not HealthyGAN, StarGAN, and DeScarGAN. FP-
GAN and StarGAN are the only models that 
convincingly visualize the tumor on the PCa 
detection map. The performance of FP-GAN was 
further evaluation on the test sets. The AUC was 
0.72 on both the internal and external test sets 
using the initial model. Stable performance with a 
standard deviation of 1%–4% was observed 
across the five randomly initialized models. All 
model initializations successfully detected the 
malignant area in a patient with a 
histopathologically confirmed GGG 2 tumor. The 
anomaly scores corresponding to all model 
initializations are consistently higher (𝑝 < 0.001) 
for positive than negative patients in the test sets. 
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University Hospital, Trondheim, 
Norway, from January 2013 to 
December 2020. 
 
 
Outcomes reported: 

• Classification performance 
(AUC) 

 
Tong et al 
(2023). 
Comparison of 
a Deep 
Learning-
Accelerated 
vs. 
Conventional 
T2-Weighted 
Sequence in 
Biparametric 
MRI of the 
Prostate. Jour
nal of 
Magnetic 
Resonance 
Imaging.  
 
 
(USA)  

Study Design: Retrospective 
 
Intervention: A commercially 
developed proprietary deep learning-
based prototypical computer-aided 
detection algorithm (DL-CAD) (MR 
Prostate AI, version 1.3.2, build July 
07, 2021, front end build November 
06, 2019, Siemens Healthcare) 
 
Comparator: Human (three 
abdominal fellowship trained 
radiologists) 
 
Study aim: To compare the 
diagnostic ability of a prototype deep 
learning-accelerated T2-weighted 
image (DL-T2) against the 
conventional clinical T2-weighted 
image (CL-T2) in both a reader study 
and a study utilizing a commercially 
developed prototype deep learning-
based computer-assisted detection 
(DL-CAD). 
 
Data collection methods and dates: 
The picture archiving and 
communication system (PACS) was 
searched for consecutive patients 
who had an MRI of the prostate from 
December 28, 2020 to April 28, 2021 
 

Sample size: 160 scans from 80 patients 
 
Participants: Patients were included with 
indications of suspected prostate cancer or a 
diagnosed low-risk prostate cancer on active 
surveillance. Patients were included if their 
imaging protocol had both the conventional 
axial T2-weighted image (CL-T2) and the 
deep learning-accelerated axial T2 (DL-T2). 
DL-T2 sequence was routinely included in 
clinical scans as a backup T2-weighted 
image in case of artifact. Other exclusion 
criteria included the presence of a hip 
arthroplasty, prior treatment of prostate 
cancer, or no adequate follow-up. 
 
Dataset details: Dataset obtained from the 
institutional clinical picture archiving and 
communication system (PACS) (Visage 
Imaging, Berlin, Germany). 
 
Cancer type: Prostate cancer 
 
Imaging technique: Biparametric MRI 
 

Primary Findings: 
Radiology Reader Results 
There was no significant difference in overall 
image quality for readers 1 (axial CL-T2: 3.72 ± 
0.53, axial DL-T2: 3.89 ± 0.39, P = 0.99; coronal 
CL-T2: 3.86 ± 0.35, coronal DL-T2: 3.94 ± 0.25, P 
= 0.99) and 2 (axial CL-T2: 3.33 ± 0.82, axial DL-
T2: 3.31 ± 0.74, P = 0.49; coronal CL-T2: 3.39 ± 
0.71, coronal DL-T2: 3.31 ± 0.71, P = 0.20). 
Reader 3 rated CL-T2 with significantly higher 
overall image quality, though the difference was 
small (axial CL-T2: 3.67 ± 0.63, axial DL-T2: 3.51 
± 0.62; coronal CL-T2: 3.73 ± 0.52, coronal DL-T2: 
3.48 ± 0.62). 
 
There was no significant difference in AUC of the 
ROC curve between CL-bpMRI and DL-bpMRI in 
all readers in patient-based analysis: (CL-bpMRI, 
DL-bpMRI) – reader 1 (0.77, 0.78, P = 0.98); 
reader 2 (0.65, 0.66, P = 0.95); reader 3 (0.57, 
0.60, P = 0.52); lesion-based (CL-bpMRI, DL-
bpMRI) – reader 1 (0.71, 0.70, P = 0.92); reader 2 
(0.58, 0.62, P = 0.70); reader 3 (0.57, 0.60, P = 
0.70). In patient-based analysis, there was no 
significant ence in AUC of ROC between CL-
bpMRI and DL-bpMRI: (CL-bpMRI, DL-bpMRI) – 
reader 1 (0.71, 0.70, P = 0.92); reader 2 (0.58, 
0.62, P = 0.70); reader 3 (0.57, 0.60, P = 0.70). 
Light’s kappa was fair, measuring 0.35 for inter 
reader variation. In lesion-based analysis results, 
reader 1 identified a total of 34 lesions on CL-
bpMRI (29 Peripheral Zone (PZ), 5 Transition 

Radiologists blinded to 
acquisition method.  
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Outcomes reported:  
• Image quality 
• Diagnostic performance 

 

Zone (TZ)) and 27 lesions on DL-bpMRI (21 PZ, 6 
TZ). Reader 2 identified a total of 44 lesions on 
CL-bpMRI (33 PZ, 11 TZ) and 51 lesions on DL-
bpMRI (32 PZ, 19 TZ). Reader 3 identified a total 
of 17 lesions on CL-bpMRI (16 PZ, 1 TZ) and 15 
lesions on DL-bpMRI (12 PZ, 3 TZ) 
 
DL-CAD results 
DL-CAD did not have significantly different 
sensitivity in patient-based evaluation or lesion-
based evaluation when assessing CL-bpMRI 
compared to DL-bpMRI but had significantly lower 
specificity when evaluating DL-bpMRI. On lesion-
based analysis, DL-CAD identified 22 PZ lesions 
on CL-bpMRI and 24 PZ lesions on DL-bpMRI and 
30 TZ lesions on CL-bpMRI and 41 TZ lesions on 
DL-bpMRI. Two csPCa were missed on the CL-
bpMRI but detected on DL-bpMRI and both were 
located in the TZ. 
 

Zhang, et al 
(2022). 
Pseudoprospe
ctive 
paraclinical 
interaction of 
radiology 
residents with 
a deep 
learning 
system for 
prostate 
cancer 
detection: 
experience, 
performance, 
and 
identification of 
the need for 
intermittent 
recalibration. I

Study Design: Retrospective, 
pseudoprospective, paraclinical 
analysis was performed in a cohort 
 
Intervention: A previously 
established and validated DL 
algorithm, convolutional neural 
network (CNN) 
 
Comparator: Human (radiologists-in-
training) 
 
Study aim: To estimate the 
prospective utility of a previously 
retrospectively validated convolutional 
neural network (CNN) for prostate 
cancer (PC) detection on prostate 
magnetic resonance imaging 
 
Data collection methods and dates: 
Consecutive patients were examined 

Sample size: 201 examinations from 201 
patients 
 
Participants: All men had suspicion for 
prostate cancer based on prostate-specific 
antigen elevation, clinical examination, or 
participation in the active surveillance 
program. Included patients had mpMRI 
performed on one of the institutional MRI 
systems and MRI/TRUS-fusion biopsy 
performed at the institutions. 
 
Dataset details: Dataset obtained from an 
active surveillance programme in Germany. 
 
Cancer type: Prostate cancer 
 
Imaging technique: MRI 
 

Primary Findings:  
Time to Finalization of Paraclinical Image 
Interpretation 
Median time between image acquisition and end 
of research interpretation was 30 hours (IQR, 8.6–
139.2 hours). Median time from research 
interpretation to availability of final pathology 
reports was of 5.7 days (IQR, 1.7–10.6 days). 
 
Patient-Level Comparison of Pre- and Post-
CNN Research and Clinical PI-RADS 
Assessment 
The CNN achieved an ROC area under the curve 
of 0.77 on a patient basis. Using PI-RADS ≥3-
emulating probability threshold (c3), CNN had a 
patient-based sensitivity of 81.8% and specificity 
of 54.8%, not statistically different from the current 
clinical routine PI-RADS ≥4 assessment at 90.9% 
and 54.8%, respectively ( P = 0.30/P = 1.0). In 
general, residents achieved similar sensitivity and 
specificity before and after CNN review.  
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nvestigative 
Radiology, 57(
9), pp.601-
612.  
 
 
(Germany)  

between November 2019 and 
September 2020 
 
Outcomes reported:  

• Time to image interpretation 
• Clinical performance  

 

 
Sextant-Level Comparison of Pre- and Post-
CNN Research and Clinical PI-RADS 
Assessment 
On a prostate sextant basis, clinical assessment 
possessed the highest ROC area under the curve 
of 0.82, higher than CNN (AUC = 0.76, P = 0.21) 
and significantly higher than resident performance 
before and after CNN review (AUC = 0.76 / 0.76, 
P ≤ 0.03). 
 
Additional Findings: 
Residents' Subjective Survey Results 
The resident survey indicated CNN to be helpful 
and clinically useful. In the survey, radiologists-in-
training stated that they “completely” or 
“qualitatively” agreed with the CNN prediction in 
most cases (59%). In 9%, the CNN identified 
lesions that the residents chose to add in their 
second assessment. Cases were felt to be 
undercalled in 34%. 
 

Lung cancer 
Baldwin et al 
(2020). 
External 
validation of a 
convolutional 
neural network 
artificial 
intelligence 
tool to predict 
malignancy in 
pulmonary 
nodules. Thora
x, 75(4), 
pp.306-312.  
 
 
(UK) 
 

Study Design: Retrospective 
(Not clearly stated) 
 
Intervention: Previously developed 
AI model (Lung Cancer Prediction 
CNN (LCP-CNN) 
 
Comparator: Brock model 
 
Study aim: To compare the 
performance of an AI algorithm, the 
lung cancer prediction convolutional 
neural network (LCP-CNN), with that 
of the Brock University model, 
recommended in UK guidelines. 
 

Sample size: There were 1,397 nodules in 
1,187 patients, 
 
Participants: Adult patients reported as 
having one or more solid pulmonary nodules 
of 5–15 mm in maximal axial diameter 
detected on thoracic CT scan. With CT slice 
thickness of 3mm or less.  
 
Dataset details: Dataset obtained from 
three hospitals in the UK 
 
Cancer type: Lung cancer 
 
Imaging technique: CT scan 
 

Primary Findings: 
 
The area under the curve for LCP-CNN was 
89.6% (95% CI 87.6 to 91.5), compared with 
86.8% (95% CI 84.3 to 89.1) for the Brock model 
(p≤0.005). Using the LCP-CNN, 24.5% of nodules 
scored below the lowest cancer nodule score, 
compared with 10.9% using the Brock score. 
Using the predefined thresholds, the LCP-CNN 
gave one false negative (0.4% of cancers), 
whereas the Brock model gave six (2.5%), while 
specificity statistics were similar between the two 
models. 
The LCP-CNN had a sensitivity of 99.57 (95% CI 
98.62 to 100.00) and a specificity of 28.03 (95% 
CI 25.51 to 30.62), compared with Brock’s 
sensitivity of 97.44 (95% CI 95.26 to 99.18) and 
specificity of 29.23 (95% CI 26.69 to 31.88). 

Data were enriched to 
contain at least a 10% 
cancer prevalence 
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Data collection methods and dates: 
Retrospective data collection ran from 
January 2018 to August 2019. 
 
Outcomes reported: 

• Performance efficacy 
 
 

 
When typical perifissural nodules and intra-
pulmonary lymph nodes, which would not usually 
warrant follow-up, were excluded from the 
validation cohort the discriminatory ability of both 
models reduced. The LCP-CNN still outperformed 
the Brock model (AUC 86.4% (95% CI 82.2 to 
90.3) compared with Brock AUC of 81.1% (95% CI 
76.3 to 85.6); p=0.0113). Rule-out rates were also 
lower for this cohort, but the LCP-CNN still ruled 
out 16.7% of nodules with only one false negative, 
and Brock model ruled out 19.3% with six false 
negatives. 
 

Jacobs et al 
(2021). Deep 
learning for 
lung cancer 
detection on 
screening CT 
scans: results 
of a large-
scale public 
competition 
and an 
observer study 
with 11 
radiologists. R
adiology: 
Artificial 
Intelligence, 3(
6), p.e210027.  
 
 
 
(USA/Canada/
Netherlands/B
elgium) 

Study Design: Retrospective (No 
clearly stated) 
 
Intervention: Three top-performing 
algorithms from the Kaggle Data 
Science Bowl 2017 public 
competition: grt123, Julian de Wit and 
Daniel Hammack (JWDH), and 
Aidence (all previously developed 
deep learning algorithms) 
 
Comparator: Human (11 radiologists)  
 
Study aim: To determine whether 
deep learning algorithms developed in 
a public competition could identify 
lung cancer on low-dose CT scans 
with a performance similar to that of 
radiologists. 
 
 
Data collection methods and dates: 
300 patient scans were used for 
model assessment; 150 patient scans 
were from the competition set and 
150 were from an independent 

Sample size: 300 patient CT scans 
 
Participants: For the cancer-positive scans, 
the screening CT scan obtained before the 
lung cancer diagnosis was included. Only 
scans in patients for whom the diagnosis 
followed within 1 year of the CT scan were 
included. Non cancer scans were selected 
from individuals who did not have a lung 
cancer diagnosis during the course of the 
screening program and for whom the 
minimum follow-up period was 2 years. 
 
Dataset details: The scans originated from 
the National Lung Screening Trial, The 
Danish Lung Cancer Screening Trial and 
The screening program at the Lahey Hospital 
and Medical Center (Burlington, Mass). 
 
Cancer type: Lung cancer 
 
Imaging technique: Low dose CT scans 
 

Primary Findings: 
DSB2017 Competition Results 
The AUC values of the top 10 algorithms were 
high and ranged between 0.85 and 0.88. 
 
Observer Experiment 
For the top three solutions (grt123, JWDH, and 
Aidence), software packages that can process 
unseen CT scans were compiled, and the 
correlation scores between the recomputed and 
the submitted scores of the algorithms were all 
above 0.99.  
 
All readers completed the full set of 300 scans of 
the observer experiment, and the average reading 
time per scan ranged from 96 seconds to 275 
seconds. The AUC values were 0.88 (95% CI: 
0.84, 0.91) for grt123, 0.90 (95% CI: 0.87, 0.93) 
for Aidence, and 0.90 (95% CI: 0.87, 0.93) for 
JWDH when the models were assessed on all 300 
scans. For the radiologists, the AUCs ranged from 
0.84 (95% CI: 0.80, 0.88) to 0.94 (95% CI: 0.92, 
0.96), with an average AUC of 0.92 (95% CI: 0.89, 
0.95). The top three algorithms showed good 
performance, and no performance drop was seen 
on the independent validation data. The statistical 
analysis showed that the average AUC among the 

It is unclear from the 
study the time periods 
the dataset were 
retrieved. 
 
The radiologists were 
informed that about one-
third of the scans were 
cancer positive, but they 
were blinded to clinical 
information and the 
results of the algorithms.  
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dataset (data collection dates not 
stated) 
 
Outcomes reported: 

• Diagnostic performance 
(AUC) 

 
 

11 radiologists was higher than that of the grt123 
algorithm (P = .02); whereas the AUCs from the 
other two models were not significantly worse 
compared with those of the radiologists (JWDH, P 
= .29; and Aidence, P = .26).  
 

Maldonado et 
al (2021). 
Validation of 
the BRODERS 
classifier 
(Benign versus 
aggRessive 
nODule 
Evaluation 
using 
Radiomic 
Stratification), 
a novel HRCT-
based 
radiomic 
classifier for 
indeterminate 
pulmonary 
nodules. Euro
pean 
Respiratory 
Journal, 57(4).  
 
 
(USA) 
 

Study Design: Retrospective (Not 
clearly stated) 
 
Intervention: BRODERS classifier 
used by CANARY AI software 
 
Comparator: Brock model 
 
Study aim: To reports the 
independent external validation of the 
Mayo Clinic BRODERS (Benign 
versus aggRessive nODule 
Evaluation using Radiomic 
Stratification) classifier, radiomics 
model, for the classification into 
benign and malignant lung nodules. 
 
Data collection methods and dates: 
Dates not provided, images taken 
from the NLST and the Vanderbilt 
databases 
 
Outcomes reported: 

• Diagnostic performance 
 
 

Sample size: 685 images for the training set 
and 170 patients/ images for the validation 
set 
 
Participants: Patients with screen-detected 
IPNs with largest diameter ranging from 7 to 
30 mm 
 
Dataset details: The validation dataset 
included consecutive patients with 
incidentally identified IPNs enrolled into the 
Vanderbilt University pulmonary nodule 
registry. Training set was obtained from the 
National Lung Screening Trial 
 
Cancer type: Lung cancer 
 
Imaging technique: CT 
 

Primary Findings: 
For the entire Vanderbilt validation set (n=170, 
54% malignant), the AUC was 0.87 (95% CI 0.81–
0.92) for the Brock model and 0.90 (95% CI 0.85–
0.94) for the BRODERS model. Using the optimal 
cut-off determined by Youden’s index, the 
sensitivity was 92.3%, the specificity was 62.0%, 
the positive (PPV) and negative predictive values 
(NPV) were 73.7% and 87.5%, respectively. For 
nodules with intermediate pre-test probability of 
malignancy, Brock score of 5–65% (n=97), the 
sensitivity and specificity were 94% and 46%, 
respectively, the PPV was 78.4% and the NPV 
was 79.2%. Conclusions: The BRODERS 
radiomic predictive model performs well on an 
independent dataset and may facilitate the 
management of indeterminate pulmonary nodules. 
 
 

It is unclear from the 
study the time periods 
the dataset were 
retrieved 

Tam et al 
(2021). 
Augmenting 
lung cancer 
diagnosis on 
chest 
radiographs: 

Study Design: Retrospective (Not 
clearly stated) 
 
Intervention: a commercially 
available AI algorithm (Red Dot, 
Behold.ai, London, UK) +/- 
radiologists 

Sample size: 396 examinations from 296 
patients 
 
Participants: 1, 2 or 3 cm both central and 
peripheral lung tumors were collected. No 
tumor was included that was >3.5 cm 
 

Primary Findings: 
Radiologist performance  
The mean accuracy of cancer detection is 87% 
(84-90%) and overall mean sensitivity to cancer is 
78% (69-86%). This corresponds to between 136 
and 171 patients being diagnosed correctly for 
tumors and between 62 and 27 patients with 

It is unclear from the 
study the time periods 
the dataset were 
retrieved 
 
It appears that some of 
the study authors are 
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Positioning 
artificial 
intelligence to 
improve 
radiologist 
performance. 
Clinical 
Radiology, 76(
8), pp.607-
614.  
 
 
(UK) 

 
Comparator: Human (radiologists)  
 
Study aim: To evaluate the role that 
AI could play in assisting radiologists 
as the first reader of chest 
radiographs (CXRs), to increase the 
accuracy and efficiency of lung 
cancer diagnosis by flagging positive 
cases before passing the remaining 
examinations to standard reporting 
 
Data collection methods and dates: 
Dataset obtained from the NHS 
Cancer Registry database to yield a 
list of 7 years’ worth of lung cancers 
from the hospital site. 
 
Outcomes reported: 

• Diagnostic performance 
 

Dataset details: Dataset obtained from the 
NHS Cancer Registry database, UK 
 
Cancer type: Lung cancer 
 
Imaging technique: X-rays 
 

missed cancer pathologies. All radiologists had a 
low rate of false positives, between one and nine 
examinations (average precision 95.67%). The 
correlation between the radiologists’ reports 
shows an average agreement of 86.7% and 
corresponding average Cohen’s kappa score of 
0.72, denoting good overall agreement. 
Agreement between all radiologists occurs in 80% 
of cases. Predictions made by radiologist 1 and 
radiologist 3 are statistically different (p<0.05). 
 
AI performance  
The AI algorithm achieved an overall accuracy of 
87% on this tumor dataset, equivalent to the mean 
performance of the radiologists. The algorithm 
sensitivity was superior to two of three radiologists 
at 80% whilst specificity was marginally lower than 
radiologists at 93%. There was an increase in 
false-positive examinations, with an overall 
precision of 92%. 
 
Radiologist plus AI 
Overall accuracy and sensitivity were increased 
with AI, improving average scores by +3.67% and 
+13.33% respectively. False-negative cases, were 
reduced by 15-40 cases. Combined performance 
showed an increase in false-positive 
examinations, with an average precision change 
of -5.33% and specificity change of -6%. For 
radiologists, improvements were statistically 
significant when compared to their standalone 
performance (p<0.05). Agreement between 
radiologists improved with AI, with radiologist + AI 
labels agreeing in 92% of cases (+12%). Average 
proportional agreement increased to 94.33% 
(+7.63%) and the average Cohen’s Kappa score 
was 0.89 (+0.17), suggesting very good 
agreement. Radiologist + AI predictions were 
statistically similar (p>0.05). On average, missed 
tumors were reduced by 60% by a single 
radiologist with AI. Combining the predictions of all 

employed by the 
company that created the 
AI model 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.11.09.23298257doi: medRxiv preprint 

https://www.sciencedirect.com/science/article/abs/pii/S0009926021002373
https://www.sciencedirect.com/science/article/abs/pii/S0009926021002373
https://www.sciencedirect.com/science/article/abs/pii/S0009926021002373
https://www.sciencedirect.com/science/article/abs/pii/S0009926021002373
https://www.sciencedirect.com/science/article/abs/pii/S0009926021002373
https://www.sciencedirect.com/science/article/abs/pii/S0009926021002373
https://doi.org/10.1101/2023.11.09.23298257
http://creativecommons.org/licenses/by-nd/4.0/


 

RR0008_Artificial intelligence in cancer diagnosis_November 2023 67 

Citation 
(Country) Study Details Participants & setting Key findings Observations/notes 

radiologists and taking any positive prediction of a 
tumor as the given label, reduced missed tumors 
by 65.4%.  
 
Algorithm performance on radiologist misses 
The algorithm detected eight of these cases, 
which would have been otherwise missed. In total, 
the algorithm detected 70.2% of all tumors, which 
were missed by at least one radiologist. 
 
Distracting findings 
Radiologist performance was significantly reduced 
on these examinations, with accuracy and 
sensitivity decreasing by 18% and 30%, 
respectively, when compared to examinations 
without distracting findings. The algorithm’s 
performance on tumors was also decreased, but 
to a lesser extent, with accuracy and sensitivity 
decreasing by 12% and 10%, respectively. 
Combined radiologist + AI approach improves 
accuracy and sensitivity overall; improvements are 
significantly larger when distracting findings are 
present. Accuracy increases by 9% compared to a 
1% increase without.   
 
Additional Findings: 
Overall sensitivity for tumors increased with tumor 
size for both radiologists and the algorithm; 
however, combined sensitivity showed 
performance improvements on cancers of all 
sizes, with the greatest sensitivity increase (+0.17) 
coming in tumors 1-2 cm in size. 
 

Toğaçar et al 
(2020). 
Detection of 
lung cancer on 
chest CT 
images using 
minimum 
redundancy 

Study Design: Retrospective (Not 
clearly stated) 
 
Intervention: Previously developed 
AI models LeNet, AlexNet and VGG-
16 CNNs. 
 

Sample size: The dataset consists of CT 
images collected from 69 different patients, 
100 images (50 cancerous and 50 non-
cancerous). 
 
Participants: images were acquired as part 
of routine care and not as part of a controlled 
research study or clinical trial. 

Primary Findings: 
The LeNet with RMSprop optimizer and LeNet 
with ADAM optimizer achieved 81.20 % and 73.82 
% classification accuracy. As for AlexNet with 
SGD and SGD-Drop approaches, the models 
yielded 85.12 % and 89.14 % classification 
accuracy, respectively. Lastly, 78.09 % 
classification accuracy was provided by VGG-16. 

It is unclear from the 
study the time periods 
the dataset were 
retrieved 
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maximum 
relevance 
feature 
selection 
method with 
convolutional 
neural 
networks. Bioc
ybernetics and 
Biomedical 
Engineering, 4
0(1), pp.23-39.  
 
 
(Turkey) 

Comparator: AI models above were 
compared amongst themselves  
 
Study aim: The study consists of five 
experiments. The aim of the first two 
experiments was to measure the 
success of CNNs and the machine 
learning classifiers without image 
augmentation techniques. The path 
followed in the third and fourth 
experiments was the same as in the 
first two experiments. The only 
difference was to learn whether the 
image augmentation techniques can 
contribute to the success rates of the 
models.  
 
Data collection methods and dates: 
The images were randomly selected 
from the dataset (No dates given) 
 
Outcomes reported:  

• Classification accuracy  
 

 
Dataset details: Dataset obtained from the 
Cancer Imaging Archive (USA) 
 
Cancer type: Lung cancer 
 
Imaging technique: CT scans 
 

The best achievement was obtained via AlexNet 
with SGD-Drop architecture with an accuracy of 
89.14 %. In the second experiment, the specified 
AlexNet model was utilized as a feature extractor. 
1000 features describing the dataset were 
extracted from the last fully-connected layer of the 
model so as to apply as the input to machine 
learning classifiers. For all classifiers, 10-fold 
cross-validation method was used. The softmax 
classifier achieved the best success rate as 83.33 
%. The deep models were superior to 
conventional machine learning models. In the third 
experiment, the image augmentation techniques 
were utilized during the training of the models. The 
number of the epoch was set to 150. The best 
success rate was provided by AlexNet with an 
accuracy of 83.04 %. In the fourth experiment, 
AlexNet model was reused with image 
augmentation techniques during the training. In 
this setup, the AlexNet was used as a feature 
extractor. The deep features were applied as the 
input to the classifiers. For all classifiers, 10-fold 
cross-validation method was used. The best 
success rate was provided by k NN classifier as 
the accuracy of 98.74 %.  
 
In the last experiment, the dimension of the 
feature set obtained using image augmentation 
techniques was reduced using the PCA before the 
classification task. Then, k NN classifier was fed 
with the reduced feature set. As a result, the 
accuracy of 97.92 % was achieved. Then, using 
the mRMR algorithm with the 1000 features 
obtained from the fc8 layer of AlexNet 
architecture. 33, 50, 100, 150 and 200 most 
efficient features were determined and ranked, 
respectively. The extracted features were re-
classified with the k NN classifier. It is seen that 
PCA decreases the classification accuracy from 
98.74%–97.92 %. The PCA method obtained this 
success with only 33 features. However, the PCA 
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method consumed less time for the training of the 
model using fewer features. In addition, the 
performance results of the k NN classifier with and 
without PCA method were found as rather close. 
Then, the most efficient features were selected by 
the mRMR method of 1000 features obtained from 
the last layer of AlexNet without using the PCA 
method. The best success of rate was obtained as 
99.51% with 200 features provided by mRMR. It is 
seen that the 100, 150 and 200 features obtained 
from the mRMR algorithm were more successful 
than the 1000 features obtained from the fc8 layer 
of AlexNet. After this point, the experiment was 
extended by focusing on the k NN classifier. The 
model achieved an accuracy of 99.51 %, 
sensitivity of 99.32 %, specificity of 99.71 % and 
F-score of 99.51 %. In summary, the combination 
of data augmentation techniques, the deep 
features provided by AlexNet, the mRMR feature 
selection method and the k NN classifier ensure a 
robust and high sensitivity diagnosis model for 
lung cancer detection using chest CT images. The 
overall model accuracy was improved from 
89.14%–99.51 %.  
 
 

Ueda et al 
(2021). 
Artificial 
intelligence-
supported lung 
cancer 
detection by 
multi-
institutional 
readers with 
multi-vendor 
chest 
radiographs: a 
retrospective 
clinical 

Study Design: Retrospective  
clinical validation study 
 
Intervention: The AI-based CAD 
used in this study is EIRL Chest X-ray 
Lung nodule (LPIXEL Inc.), 
commercially available in Japan as of 
August 2020 
 
Comparator: Human readers 
(Eighteen readers - nine general 
physicians and nine radiologists) 
 
Study aim: To investigate the 
performance improvement of 

Sample size: A total of 312 radiographs (59 
malignant radiographs from 59 patients and 
253 non-malignant radiographs from 253 
patients) 
 
Participants: The eligibility criteria for the 
radiographs were Mass lesions larger than 
30 mm in size were excluded.  
 
Dataset details: Dataset obtained from at 
Osaka City University Hospital 
 
Cancer type: Lung cancer  
 
Imaging technique: X-ray 

Primary Findings: 
The deep learning-based computer-assisted 
detection model performance  
The standalone CAD sensitivity, specificity, 
accuracy, PPV, and NPV were 0.66 (0.53–0.78), 
0.96 (0.92–0.98), 0.90 (0.86–0.93), 0.78 (0.64–
0.88), and 0.92 (0.88–0.95) with mFPI of 0.05, 
respectively. 
 
Reader performance test 
All readers improved their overall performance by 
referring to the CAD output. The overall increases 
due to using the CAD for sensitivity, specificity, 
accuracy, PPV, and NPV were 1.22 (1.14–1.30), 
1.00 (1.00–1.01), 1.03 (1.02–1.04), 1.07 (1.03–

The readers were double 
blinded (did not know the 
ratio of malignant to 
normal cases, and 
clinical 
information regarding the 
radiographs was not 
made 
available to them) 
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validation 
study. BMC 
cancer, 21, 
pp.1-8.  
 
 
(Japan) 
 

physicians with varying levels of chest 
radiology experience when using a 
commercially available AI-based 
computer-assisted detection (CAD) 
software to detect lung cancer 
nodules on chest radiographs from 
multiple vendors 
 
Data collection methods and dates: 
Chest radiographs with lung cancers 
were consecutively collected from 
patients who had been subsequently 
surgically diagnosed with lung cancer 
between July 2017 and June 2018  
 
Outcomes  reported: 

• Diagnostic performance 
 

 1.11), and 1.02 (1.01–1.03), respectively. General 
physicians benefited more from the use of the 
CAD than radiologists did. The performance of 
general physicians was improved from 0.47 to 
0.60 for sensitivity, from 0.96 to 0.97 for 
specificity, from 0.87 to 0.90 for accuracy, from 
0.75 to 0.82 for PPV, and from 0.89 to 0.91 for 
NPV while the performance of radiologists was 
improved from 0.51 to 0.60 for sensitivity, from 
0.96 to 0.96 for specificity, from 0.87 to 0.90 for 
accuracy, from 0.76 to 0.80 for PPV, and from 
0.89 to 0.91 for NPV. The rate of improvement 
was particularly high for general physicians. 
General physicians were more likely to change 
their assessment from FN to TP by referencing 
correct positive CAD output (68 times (0.59) in 
general physicians, 49 (0.49) in radiologists) and 
from FP to TN by correct negative CAD output (29 
times (0.36) in general physicians, 24 times (0.29) 
in radiologists). The less experienced the reader 
was, the higher the rate of sensitivity 
improvement. Conversely, the more experienced 
the readers were, the more limited the support 
capabilities of the CAD were. Radiologists were 
less likely to change their opinion than general 
physicians, and it was more difficult for 
radiologists to change their decisions from FP to 
TN (24 times) than from FN to TP (49 times). 
Results show an instance in which a physician 
mistakenly changed their decision from TP to FN 
due to the FN output of the CAD. 
 
 

Wataya et al 
(2023). 
Radiologists 
with and 
without deep 
learning–
based 
computer-

Study Design: Retrospective 
 
Intervention: Human + Previously 
developed AI model pulmonary 
nodule CAD system attached to 
SYNAPSE SAI Viewer V1.4 
(FUJIFILM Corporation). 
 

Sample size: 101 patients with 101 
nodules/masses 
 
Participants: nodules/masses with the 
following characteristics were included: 
undistorted by other pulmonary conditions, 
6–70 mm in size, absence of other 
abnormalities in the slices around the 

Primary Findings: 
Performance of the radiologists in 
characterizing and diagnosing the 
nodules/masses with and without CAD 
 
The AUCs for ill-defined boundary, irregular 
margin, irregular shape, calcification, pleural 
contact, and malignancy in all 15 radiologists, 

The readers were blinded 
to the patients’ clinical 
backgrounds, age, and 
sex  
 
The authors of this 
manuscript declare 
relationships with the 
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aided 
diagnosis: 
comparison of 
performance 
and 
interobserver 
agreement for 
characterizing 
and 
diagnosing 
pulmonary 
nodules/mass
es. European 
Radiology, 33(
1), pp.348-
359.  
 
 
(Japan)  

Comparator: Human (15 radiologists)  
 
Study aim: To compare the 
performance of radiologists in 
characterizing and diagnosing 
pulmonary nodules/masses with and 
without deep learning (DL)–based 
computer-aided diagnosis (CAD). 
 
Data collection methods and dates: 
CT performed between January and 
March 2018 
 
Outcomes reported: 

• Diagnostic performance 
• Median assessment time 

 

nodules/masses that may facilitate the 
diagnosis, and clinically or pathologically 
determined to be benign or malignant. 
 
Dataset details: Dataset obtained from 
Osaka University Hospital 
 
Cancer type: Lung cancer 
 
Imaging technique: CT scans 

irregular margin and irregular shape in L and ill-
defined boundary and irregular margin in M 
improved significantly (p < 0.05); no significant 
improvements were found in H. L showed the 
greatest increase in the AUC for malignancy (not 
significant).  
 
Interobserver agreement on the 
characterization and diagnosis with and 
without CAD 
Intraclass correlation coefficients (ICC) improved 
with CAD for all items, except for lobular shape in 
M and malignancy in H. In L&M&H, the ICC 
improved from a moderate correlation to a good 
correlation with CAD in three items: irregular 
margin [from 0.68 to 0.74 with CAD], irregular 
shape [from 0.61 to 0.71], and calcification [from 
0.69 to 0.76]), whereas it showed a good 
correlation both with and without CAD in ground-
glass opacity (from 0.82 to 0.87) and pleural 
contact (from 0.74 to 0.79). A poor correlation was 
found both with and without CAD in lobular shape 
(from 0.42 to 0.47) and pleural indentation (from 
0.47 to 0.58). In L, when focused on the items with 
significant increases in the AUC, the ICC for ill-
defined boundary achieved a good correlation with 
CAD (from 0.65 to 0.72), and the correlation of 
irregular shape with CAD improved from poor to 
moderate (from 0.49 to 0.62). Similarly, in M, the 
ICC for ill-defined boundary achieved a good 
correlation with CAD (from 0.61 to 0.73) and 
irregular margin (from 0.71 to 0.75) maintained a 
good correlation with CAD. 
 
Comparison of reading time 
The median assessment time among the 15 
radiologists significantly decreased from 83.6 ± 
21.9s to 69.9 ± 29.1s with CAD (p= 0.01), 
although decreases in the individual groups were 
not statistically significant (L: from 79.5 ± 8.2s to 
64.8 ± 19.8s, p =0.31, M: from 91.8 ± 30.2s to 

following company: 
FUJIFILM Corporation 
(who developed the AI 
model) 
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78.6 ± 34.9s, p =0.13, and H: from 79.4 ± 19.0s to 
66.2 ± 28.4s, p= 0.31). No statistical significance 
was observed in the range of the decrease among 
groups (L vs. M: p = 0.84; M vs. H: p = 1.00; L vs. 
H: p= 1.00). Regarding the assessment time for 
each radiologist, it was prolonged by CAD only for 
three of the 15 radiologists, and the maximum rate 
of prolongation was limited to 18.1% (from 83 s 
without CAD to 98 s with CAD). Among the 12 
radiologists with shortened assessment time, the 
maximum rate of shortening was 50.0% (from 80 
to 40s). 
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7.3 Quality appraisal 
 
Table 7. Quality appraisal results 
 
Study Test Risk of bias 

(QUADAS-2) 
Applicability 
concerns 
(QUADAS-2) 

Risk of bias 
(QUADAS-C) 

  P I R FT  P I R  P I R FT 
Akatsuka, 
2019 

Human ? ✓ ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
AI ? ✓ ✓ ✓  ✓ ✓ ✓  

Baldwin, 
2020 

Brock ? ✓ ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
 AI ? ✓ ✓ ✓  ✓ ✓ ✓  

Faiella,  
2022 

Expert ? ? ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
Human 
with AI 

? ? ✓ ✓  ✓ ✓ ✓  

Fujioka, 
2021 

Human ✓ ✗ ✓ ✓  ✓ ? ✓  ✓ ✗ ✓ ✓ 
 AI ✓ ✗ ✓ ✓  ✓ ? ✓  

Goto, 
2023 

Human ✓ ? ✓ ✓  ✓ ✓ ✓  ✓ ? ✓ ✓ 
 AI ✓ ✓ ✓ ✓  ✓ ✓ ✓  

Jacobs, 
2021 

Human ✗ ? ✓ ✓  ✓ ✓ ✓  ✗ ? ✓ ✓ 
AI ✗ ? ✓ ✓  ✓ ✓ ✓      

Lo Gullo 
2020 

Human  ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ 
AI ✓ ✓ ✓ ✓  ✓ ✓ ✓      

Maldonado, 
2021 

Brock ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ 
AI ✓ ✓ ✓ ✓  ✓ ✓ ✓      

O'Connell, 
2022 

Human ? ? ✓ ✗  ✓ ✓ ✓  ? ✗ ✓ ✗ 
AI ? ? ✓ ✗  ✓ ✓ ✓      

Tong,  
2023 

Human ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ 
AI ✓ ✓ ✓ ✓  ✓ ✓ ✓      

Uhlig,  
2018 

Human ? ✓ ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
AI ? ✓ ✓ ✓  ✓ ✓ ✓      

Arslan,  
2023 

Human ✓ ? ✓ ✓  ✓ ✓ ✓  ✓ ? ✓ ✓ 
Human 
with AI 

✓ ? ✓ ✓  ✓ ✓ ✓      

Calisto,  
2022 
 

Human ? ? ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
Human 
with AI 

? ? ✓ ✓  ✓ ✓ ✓      

Forookhi, 
2023 
 

Human ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ? 
Human 
with AI 

✓ ✓ ✓ ✓  ✓ ✓ ✓      

Heller, 
2021 
 

Human ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ? ✓ ✓ 
Human 
with AI 

✓ ✓ ✓ ✓  ✓ ✓ ✓      

Jiang, 
2021 
 

Human 
with 
CAE 

✗ ? ✓ ✓  ✓ ✓ ✓  ✗ ✗ ✓ ? 

Human 
with AI 

✗ ? ✓ ✓  ✓ ✓ ✓      

Mango,  
2020 
 

Human ? ? ✓ ✓  ✓ ✓ ✓  ? ✗ ✓ ✓ 
Human 
with AI 

? ? ✓ ✓  ✓ ✓ ✓      

Pacilè , 
2020 
 

Human ✗ ✗ ✓ ✓  ✓ ✓ ✓  ✗ ✗ ✓ ✓ 
Human 
with AI 

✗ ✗ ✓ ✓  ✓ ✓ ✓      

Pinto, 
2021 
 

Human ✗ ✗ ✓ ✓  ✓ ✓ ✓  ✗ ✗ ✓ ✓ 
Human 
with AI 

✗ ✗ ✓ ✓  ✓ ✓ ✓      

Tam, 
 2021 
 

Human ✗ ✓ ✓ ✓  ✓ ✓ ✓  ✗ ? ✓ ✓ 
Human 
with AI 

✗ ✓ ✓ ✓  ✓ ✓ ✓      

Ueda,  
2021 
 

Human ? ✓ ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
Human 
with AI 

? ✓ ✓ ✓  ✓ ✓ ✓      

Van Zelst, 
2020 
 

Human ✗ ? ✓ ✓  ✓ ✓ ✓  ✗ ? ✓ ✓ 
Human 
with AI 

✗ ? ✓ ✓  ✓ ✓ ✓      

Wataya, 
2023 
 

Human ✗ ? ✓ ✓  ✓ ✓ ✓  ✗ ✗ ✓ ✓ 
Human 
with AI 

✗ ? ✓ ✓  ✓ ✓ ✓      

Zhang,  
2022 

Human ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ? ✓ ✓ 
Human 
with AI 

✓ ✓ ✓ ✓  ✓ ✓ ✓      

Patsanis, 
2023 

AI ? ? ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
AI ? ? ✓ ✓  ✓ ✓ ✓      

Toğaçar, 
2020 

AI ? ? ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
AI ? ? ✓ ✓  ✓ ✓ ✓      

Tsochatzidis, 
2019 

AI ? ? ? ?  ? ✓ ?  ? ✗ ? ? 
AI ? ? ? ?  ? ✓ ?      

Vamvakas, 
2022 
 

AI ? ? ✓ ✓  ✓ ✓ ✓  ? ? ✓ ✓ 
AI ? ? ✓ ✓  ✓ ✓ ✓      

P = patient selection; I = index test; R = reference standard; FT = flow and timing. 
✓ indicates low risk; ✗ indicates high risk; ? indicates unclear risk.
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Figure 1. Graphical display of quality appraisal results for studies included in the synthesis of the rapid review 
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7.4 Information available on request 
The following are available on request: protocol; search strategies for Embase, CENTRAL 
and ScanMedicine. 

8.  ADDITIONAL INFORMATION 
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9. APPENDIX 
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Multicenter Comparison of the PI-RADS Score and an Artificial Intelligence 
System. Available at: https://clinicaltrials.gov/ct2/show/record/NCT04732156  
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9. Artificial intelligence in mammography study. Available at: 
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Dose Reduction. Available at: 
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12. Development and validation of the AI-based diagnosis system for pathological 
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13. Can ovarian cancer detection be improved using AI-driven diagnostic support 
applied to ultrasound images? Available at: 
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14. Automatic Detection in MRI of Prostate Cancer: DAICAP (DAICAP). Available 
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15. A prospective clinical study for a rectal CRM automatic detection system based 
on Faster-RCNN. Available at: 
https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02434527/full  

16. Diagnostic Efficiency and Impact on Physicians' Learning Process of an Artificial 
Intelligence Ultrasound Diagnosis System for Thyroid Nodules: a Multicentre 
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Randomized Controlled Trial. Available at: 
https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01975026/full  

17. 17. Clinical Research on a Novel Deep-learning Based System in Pancreatic 
Mass Diagnosis. Available at: 
https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02183990/full  

18. 18. Development and validation of artificial intelligence-based rapid on-site 
cytologic evaluation during endoscopic ultrasound guided fine needle aspiration 
for pancreatic mass. Available at: 
https://www.clinicalkey.com/#!/content/playContent/1-s2.0-
S0016510723015626?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretri
eve%2Fpii%2FS0016510723015626%3Fshowall%3Dtrue&referrer=https:%2F%
2Fwww.giejournal.org%2F  

19. IDEAL: Artificial Intelligence and Big Data for Early Lung Cancer Diagnosis 
Prospective Study (Phase 2). Available at: 
https://clinicaltrials.gov/ct2/show/record/NCT03753724  

20. New Strategies Based on Artificial Intelligence in Breast Cancer Screening 
Programs in Córdoba With Digital Mammography and Digital Breast 
Tomosynthesis. A Prospective Evaluation. Available at: 
https://clinicaltrials.gov/ct2/show/record/NCT04949776  

21. Clinical Utility of Artificial Intelligence Augmented Endobronchial Ultrasound 
Elastography in Lymph Node Staging for Lung Cancer 
https://clinicaltrials.gov/ct2/show/record/NCT04816981  
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APPENDIX 3: Summary of Artificial intelligence (AI) models investigated as interventions 
 

Citation (Dataset country) Name and type of 
intervention/control AI model description  

 
Reference 
standard 

Breast cancer  
Calisto et al (2022) 
 
Portugal  
 
 

Intervention: BreastScreening-AI. A 
DenseNet model (Deep neural 
network) (previously developed) + 
clinician 
 
Control: Clinician only 
 
 

The DenseNet was developed using PyTorch - a deep learning library that 
is widely used by the machine learning community.  
 
The DenseNet architecture used in BreastScreening-AI was DenseNet-161. 
The DenseNet was initially pretrained on ImageNet, a large dataset of 1.2 
million images from 1000 classes. Training was performed using the Adam 
optimizer, with the default parameters (learning rate of 10-3 and weight 
decay of 10-4). 

Set by the head 
of radiology 
using BI-RADS 

Fujioka et al (2021) 
 
 Japan3 

Intervention: CNN models 
constructed to calculate the probability 
of malignancy of an image using 
Xception, InceptionV3, 
InceptionResNetV2, DenseNet121, 
DenseNet161, and NASNetMobile 
(previously developed) 
 
Control: Human readers (a breast 
surgeon and a radiologist) 
 
 

The CNNs were performed on DEEPstation (UEI, Tokyo, Japan) containing 
the graphics processing unit GeForce GTX 1080 (NVIDIA, Santa Clara, CA, 
USA), central processing unit Core i7–8700 (Intel, CA, USA), and graphical 
user interface-based DL tool Deep Analyzer (GHELIA, Tokyo, Japan). 
 
The CNNs were initialized by the ImageNet (http://www.image-net.org/) 
pretraining model and fine-tuned to yield better performance. The 
parameters of optimisation were as follows: 
optimiser algorithm = Adam (lr = 0.0001, β1 = 0.9, β2 = 0.999, 
eps = le-8, decay = 0, amsgrad = False). The image sets for training and 
validation phase were randomly split into training data and validation data in 
the ratio of 9:1 per epoch, and supervised learning with 500 epochs was 
performed 

Histopathologica
l examination/ 
follow-up 

Goto et al (2023) 
 
Japan 

Intervention: Deep learning algorithm 
using pretrained Residual Networks 50 
(ResNet50) architecture (previously 
developed). 
 
Control: Human readers (three 
radiologists) 

The training was implemented using the Adam optimizer fixed to 0.001. The 
diagnostic model was trained with a random selection of 70% of the data 
set. Tenfold cross-validation was performed to create the trained model. 
The classification performance was evaluated using 30% of the test data 
set. 

Histopathologica
l examination 

 
 
3 If the country the dataset was obtained from was not stated within the study, the country the study was conducted in is provided 
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Heller et al (2021) 
 
USA 

Intervention: A commercially available 
FDA-approved AI software (Koios DS; 
Koios Medical, New York, New York) + 
human reader   
 
Control: Human readers (two 
radiologists) only  
 

The Koios DS for Breast Study Tool core engine, which uses a deep 
learning algorithm that characterises sonographically visualised breast 
lesions by generating a probability of malignancy, which is in turn equated 
to BI-RADS categories. The software is vendor-neutral and is the first and 
currently only FDA-approved decision support tool based on proprietary 
algorithms. The algorithms are stated to be derived from both pathology 
proven cases or imaging follow-up obtained from more than 400,000 cases, 
more than 25 institutions, and multiple ultrasound machine types and 
vendors. 

Histopathologica
l examination 

Jiang et al (2021) 
 
USA2 

Intervention: QuantX (AI software) + 
human readers 
 
Control: Human readers (19 
radiologists) alone 
 

QuantX is a computer-assisted diagnostic MRI software aid 
for use in the interpretation of breast images. This system 
was developed at the University of Chicago and 
then translated and produced as QuantX at Quantitative Insights, now 
Qlarity Imaging (Chicago, Ill). Training and validation steps were performed 
on patient cases independent from the test set. 

Ground truth 
based on final 
pathology 
reports for 
biopsied 
cancers and 
biopsied 
noncancers. 
Ground truth for 
the nonbiopsied 
noncancers 
was obtained 
from clinical and 
radiology 
reports and a 
negative follow-
up MRI 
examination at a 
minimum of 12 
months after the 
considered MRI 
examination 

Lo Gullo et al (2020) 
 
USA 

Intervention: Radiomics + Machine 
learning model (previously developed) 
 
Control: Human readers (two 
radiologists) 
 

An in-house code written in MATLAB (The MathWorks, Inc.) was used to 
input the ROIs into the open-source CERR software environment (freely 
available through GitHub) which calculated the radiomics features. No 
details on training or validation provided.  

Histopathology 
established by 
either image-
guided needle 
biopsy or 
surgery 
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Mango et al (2020) 
 
USA 

Intervention: AI decision support 
system - Koios DS for Breast system 
(previously developed) 
 
Control: Human readers (15 
physicians) 

The training data (over 400,000 clinical examples) were gathered from over 
25 machines and 25 different healthcare systems and sites. The 900 cases 
used in this validation study were completely excluded from the testing and 
development of the AI system. 

Pathology or 
imaging follow-
up 

O'Connell et al (2022) 
 
USA/Italy 

Intervention: S-Detect for Breast AI 
program (previously developed) 
 
Control: Human readers (10 
radiologists) 

S-Detect™ for Breast is a software based on a convolutional 
neural network (Samsung Medison Co., Ltd., South Korea) that has been 
trained to classify lesions using over 10,000 breast scans against “gold 
standard” biopsy assessments.  

Ground truth 
generated from 
biopsy or a 24-
month follow-up 

Pacilè et al (2020) 
 
USA 

Intervention: Human readers + AI 
(MammoScreen V1; Therapixel, Nice, 
France) – previously developed  
 
Control: Human readers (14 
radiologists) 
 

The AI system used (MammoScreen V1; Therapixel, Nice, 
France) uses two groups of deep convolutional neural networks (CNN) 
combined together with an aggregation module. The (symmetric) dream-
nets were trained directly from images and their status (negative or 
positive). The detection CNN was trained from images and their annotations 
regardless of the statuses, while the (symmetric) characterization CNN 
were trained from image annotations and their status. 

Histopathologica
l examination 

Pinto et al (2021) 
 
Netherlands 

Intervention: Human reader + AI CAD 
system (Transpara. version 1.6.0; 
ScreenPoint Medical) – previously 
developed  
 
Control: Human readers (14 
radiologists) 

The AI system identifies suspicious regions and assigns to them a score 
between 1 and 100 representing the level of suspicion (LoS) of cancer 
present (100 indicates the highest suspicion).  
Information about the AI training and validation not provided.  

One-year 
normal follow-up 
or 
histopathologic 
assessment 

Tsochatzidis et al (2019) 
 
USA 

Intervention: Deep convolutional 
neural networks (CNNs) – AlexNet, 
VGG, GoogLeNet/Inception, Residual 
Networks (ResNets) – previously 
developed  
 
Control: AI models above were 
compared amongst themselves 

For the training process the Adam optimization method was employed. Not stated 

Uhlig et al (2018) 
 
Germany 

Intervention: Five machine learning 
techniques (random forests, back 
propagation neural networks (BPN), 
extreme learning machines, support 

Implementation of machine learning techniques comprises two steps: an 
initial training step, using the clinical dataset with an input-output pair to 
train the model, followed by a testing step, where the performance of the 
prediction model is tested on new data not used for training and therefore 
unknown to the model. 

Core needle 
biopsy with 
subsequent 
histopathologic 
evaluation for 
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vector machines, and K-nearest 
neighbors) – previously developed  
 
Control: Human readers (two readers)  
 

breast lesions 
rated as BI-
RADS category 
4 or 5 by at least 
one reader or no 
evidence of size 
progression on 
imaging follow-
up for at least 
12 months for 
breast lesions 
rated as BI-
RADS 
categories 1–3 
by both readers 

Vamvakas et al (2022) 
 
Greece 

Intervention: Four popular 
implementations of Decision 
Trees (DT) Boosting classifiers, 
namely Adaptive Boosting (AdaBoost), 
Gradient Boosting (GB), Extreme 
Gradient Boosting (XGBoost), and 
Light Gradient Boosting Machine 
(LightGBM) – previously developed  
 
Control: An SVM classifier  

Python implementations for XGBoost and LightGBM were obtained from 
their original sources [https://github.com/dmlc/ 
xgboost], [https://github.com/microsoft/LightGBM] and used through the 
scikit-learn Application Programming Interface 
(API), which is a common framework for ML applications. The final feature 
subset was used to train the GB, AdaBoost, 
XGBoost, LightGBM and SVM classifiers in differentiating benign from 
malignant breast lesions. 

Histological 
verification from 
core needle 
biopsy or 
surgical excision 

van Zelst et al (2020) 
 
 Netherlands2 

Intervention: AI model not stated. 
Computer-aided detection (CAD) 
software used, a commercially 
developed ABUS CAD software 
package (QVCAD, Qview Medical Inc., 
Los Altos, CA, USA) 
 
Control: Human readers (eight 
radiologists)  

Information about the AI training not provided. Histopathologic 
examination 

Prostate cancer  
Akatsuka et al (2019) 
 
Japan 

Intervention: Previously developed 
Deep convolutional neural network 
(dCNN)(Xception) 

Three deep convolutional neural network models, Xception, inceptionV3 
and VGG16, were pre-trained on ImageNet with classification layers 

Histopathologica
l diagnosis 
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Control: Human readers (radiologists) 
 

adapted to the study’s labels. Xception was selected in this study because it 
showed the most precise 
performance for MR image classification. 10-fold cross-validation was used 
to test the prediction models, randomly dividing the whole cases in a 1:9 
ratio, using one part for testing and the other nine parts for training 

Arslan et al (2023) 
 
Turkey 

Intervention: Human + Commercially 
available DL software (Prostate AI, 
Version Syngo.Via VB60, Siemens 
Healthcare) 
 
Control: Human readers (four 
radiologists) 

The DL software used in this study has three modules: 
(i) preprocessing module, (ii) DL-based lesion 
detection module, and (iii) DL-based lesion classification 
module. 
No model training or fine-tuning was performed in this study. The model 
was only used for performance testing. 

Whole-mount 
pathology or 
MRI/ultrasound 
fusion-guided 
biopsy 

Faiella et al (2022) 
 
Italy 

Intervention: Previously developed AI 
software Quantib Prostate (Quantib 
B.V., Rotterdam, The Netherlands) + 
human (inexperienced radiologist) 
 
Control: Human reader (expert 
radiologist) 

Quantib Prostate offers features for the reading of prostate MRI in one 
workflow. The semi-automated combination of bi-parametric data provided 
supports Region of Interest (ROI) determination and enables prostate lesion 
evaluation.  
 
No information about AI training and validation provided. 

Biopsy results 
and radiology 
reports 

Forookhi et al (2023) 
 
Italy  

Intervention: Human + commercially 
available AI-assisted software 
(Quantib® Prostate) 
 
Control: Human readers (four novice 
readers) 

No information about AI training and validation provided. Reports from 
the expert 
radiologist 

Patsanis et al (2023) 
 
Norway 

 

Intervention: Six previously 
developed relevant 2D GANs were 
selected for investigation: f-AnoGAN, 
HealhtyGAN, StarGAN, StarGAN-v2, 
FP-GAN and DeScarGAN. For each 
model, the code was publicly available. 
 
Control: AI models above were 
compared amongst themselves 

For each model, the code was publicly available. 
All input annotations for training were on the image level, i.e., each input 
image was labeled as negative or positive. All models were trained to 
generate 2D images representing a negative patient. 

Manual 
delineations of 
PI-RADS ≥3 
lesions by 
imaging experts 
/radiologists 
based on 
targeted biopsy 

Tong et al (2023) 
 
 USA2 

Intervention: A commercially 
developed proprietary deep learning-
based prototypical computer-aided 
detection algorithm (DL-CAD) (MR 

The deep learning-based reconstruction algorithm was trained in a 
supervised manner using more than 10,000 slices of fully sampled T2 TSE 
acquisitions obtained from volunteers using 1.5 T and 3 T MR scanning 
systems (MAGNETOM scanners, Siemens Healthcare) of various regions 

Adequate follow 
up was defined 
as a prostate 
biopsy within 1 
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Prostate AI, version 1.3.2, build July 
07, 2021, front end build November 06, 
2019, Siemens Healthcare) 
 
Control: Human readers (three 
abdominal fellowship trained 
radiologists) 
 

of the body, including head, pelvis, and knee. The training was implemented 
in PyTorch and performed using a commercially available GPU cluster with 
32 GB of memory. 

year of the MRI 
or stability of 
PSA of at least 
1 year if mpMRI 
was 
prospectively 
determined to 
be PI-RADS 1 
or 2. 

Zhang et al (2022) 
 
Germany 

Intervention: A previously established 
and validated DL algorithm, 
convolutional neural network (CNN) 
 
Control: Human readers (radiologists-
in-training) 

The utilized deep learning (DL) system is based on a task-specific CNN U-
Net architecture and was previously retrospectively trained and validated 
using single-scanner biparametric data (T2-weighted and diffusion-weighted 
images), demonstrating similar performance to clinical PI-RADS 
assessment. 

Combined 
extended 
systematic and 
targeted 
MRI/TRUS-
fusion biopsy. 

Lung cancer   
Baldwin et al (2020) 
 
UK 

Intervention: Previously developed AI 
model (Lung Cancer Prediction CNN 
(LCP-CNN) 
 
Control: Brock model  
 

The LCP-CNN is an AI model that analyses parts of a CT scan 
around a nodule of interest and provides a score from 0 to 100 
for that nodule.  
In the first phase of training, the LCP-CNN was primed using hundreds of 
thousands of images selected and curated carefully to teach the network 
the kinds of visual discrimination tasks that may form the building blocks for 
a nodule discrimination task. The second phase comprised full supervised 
training on a version of the NLST data. This was performed on CT images 
of all solid and semi-solid nodules of at least 6mm in diameter from the 
NLST dataset that were not reported as pure ground glass opacities (GGO); 
all GGOs were excluded because there were too few examples of  
malignant GGOs to train the system reliably. 
The derivation and internal validation of the LCP-CNN was performed using 
eight-fold cross-validation, where all images and nodules for a given patient 
were assigned to the same fold, and in each of the eight training operations, 
one eighth of the data were reserved as an auxiliary set for convergence 
testing and parameter/threshold setting, and one final eighth was kept for 
internal validation. Because the NLST contains many more benign nodules 
than cancers, class balancing was  
used during training, since otherwise the resulting network would be tuned 
always to predict “benign”, since that would be the dominant class. 

Ground truth 
(based on 
histology 
(required for any 
cancer), 
resolution, 
stability or (for 
pulmonary 
lymph nodes 
only) expert 
opinion 
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Jacobs et al (2021) 
 
USA/Canada/Netherlands/
Belgium 

Intervention: Three top-performing 
algorithms from the Kaggle Data 
Science Bowl 2017 public competition: 
grt123, Julian de Wit and Daniel 
Hammack (JWDH), and Aidence (all 
pPreviously developed deep learning 
algorithms) 
 
Control: Human readers (11 
radiologists) 

No information about AI training and validation provided. Set by 
histopathologic 
examination for 
cancer-positive 
scans and 
imaging follow-
up for at least 2 
years for 
cancer-negative 
scans 

Maldonado et al (2021) 
 
USA 

Intervention: BRODERS classifier 
used by CANARY AI software 
 
Control: Brock model  
 

The BRODERS classifier (Benign versus aggRessive nODule Evaluation 
using Radiomic Stratification) is a conventional predictive radiomic model 
based on eight imaging features 
capturing nodule location, shape, size, texture and surface characteristics.  
A training set of 726 incidentally detected indeterminate pulmonary nodules 
(IPNs) from the NLST database was used to internally validate the 
BRODERS classifier 

Final diagnosis 

Tam et al (2021) 
 
UK 

Intervention: A commercially available 
AI algorithm (Red Dot, Behold.ai, 
London, UK) +/- radiologists 
 
Control: Human readers (radiologists) 
 

No information about AI training and validation provided. The ground-
truth of each 
examination 
was established 
by a 
combination of 
the cancer 
registry 
database 
records, the 
electronic 
clinical record, 
and review of 
both subsequent 
and prior 
imaging. 

Toğaçar et al (2020) 
 
 Turkey2 

Intervention: Previously developed AI 
models LeNet, AlexNet and VGG-16 
CNNs. 
 
Control: AI models above were 
compared amongst themselves 

In training of the deep models, RMSprop, ADAM and Stochastic Gradient 
Descent (SGD) optimization methods were examined. 

Each sample in 
the dataset was 
examined and 
labeled by 
experienced 
specialists. 
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Ueda et al (2021) 
 
Japan 

Intervention: The AI-based CAD used 
in this study is EIRL Chest X-ray Lung 
nodule (LPIXEL Inc.), commercially 
available in Japan as of August 2020 
 
Control: Human readers (Eighteen 
readers - nine general physicians and 
nine radiologists) 

The CAD was developed based on an encoder-decoder network 
categorizing segmentation technique in DL. No information about AI training 
and validation provided. 

Set by two 
author 
radiologists 

Wataya et al (2023) 
 
Japan  

Intervention: Human + Previously 
developed AI model pulmonary nodule 
CAD system attached to SYNAPSE 
SAI Viewer V1.4 (FUJIFILM 
Corporation). 
 
Control: Human readers (15 
radiologists) 

No information about AI training and validation provided. Established 
through the 
agreement 
between two 
board-
certificated 
chest 
radiologists with 
17 and 25 years 
of diagnostic 
experience. 

Abbreviations: Artificial intelligence (AI), Breast Imaging Reporting and Data System (BI-RADS), Back Propagation Neural Networks (BPN), Convolutional Neural Network (CNN), 
Computer Aided Diagnosis (CAD), DT (Decision Trees), Deep convolutional neural network (DCNN), Deep Learning (DL), Deep Learning Computer Aided Diagnosis (DLCAD), The United 
States Food and Drug Administration (FDA), Gradient Boosting (GB), Lung Cancer Prediction Convolutional Neural Network (LCP-CNN), Region of Interest (ROI), Level of suspicion 
(LOS), Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), Prostate Imaging Reporting and Data System (PI-RADS). 
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APPENDIX 4: MEDLINE search strategy 
 
Ovid MEDLINE(R) ALL <1946 to June 19, 2023> 
 
1 ("artificial intelligence" or AI).tw. 61802 
2 (radiomic* or "machine learning" or "deep learning" or "neural network*").tw.
 182269 
3 artificial intelligence/ or machine learning/ 68965 
4 or/1-3 250797 
5 (diagnos* adj3 imag*).tw. 54007 
6 "diagnostic aid*".tw. 3847 
7 exp Diagnostic imaging/ 2912910 
8 ("medical imaging" adj3 diagnos*).tw. 504 
9 ((X-ray or CT or MRI or PET or CBCT or MRCP or MIBG or MRS or ultrasound) adj5 
diagnos*).tw. 95951 
10 mammogra*.tw. 36225 
11 (("positron emission tomography" or "computed tomography") adj5 diagnos*).tw.
 19194 
12 ("Metaiodobenzylguanidine scan" adj5 diagnos*).tw. 3 
13 ("Magnetic resonance" adj (spectroscopy or imaging or angiogram*) adj5 diagnos*).tw.
 13135 
14 ((cerebral or brain) adj angiogram* adj5 diagnos*).tw. 144 
15 or/5-14 2977628 
16 (neoplas* or tumo?r* or malignan* or cancer* or carcinoma* or adenocarcinoma* or 
melanoma* or lymphoma* or myeloma* or sarcoma*).tw. 4122728 
17 exp Neoplasms/ 3844620 
18 16 or 17 5092487 
19 4 and 15 and 18 11866 
20 (case reports or comment or editorial or letter or review or systematic review or meta 
analysis).pt. 7437910 
21 ("systematic review" or meta-analysis or meta-analyses).ti. 301263 
22 20 or 21 7474118 
23 19 not 22 10317 
24 limit 23 to (english language and yr="2018 -Current") 7881 
25 afghanistan/ or africa/ or africa, northern/ or africa, central/ or africa, eastern/ or "africa 
south of the sahara"/ or africa, southern/ or africa, western/ or albania/ or algeria/ or andorra/ 
or angola/ or "antigua and barbuda"/ or argentina/ or armenia/ or azerbaijan/ or bahamas/ or 
bahrain/ or bangladesh/ or barbados/ or belize/ or benin/ or bhutan/ or bolivia/ or borneo/ or 
"bosnia and herzegovina"/ or botswana/ or brazil/ or brunei/ or bulgaria/ or burkina faso/ or 
burundi/ or cabo verde/ or cambodia/ or cameroon/ or central african republic/ or chad/ or exp 
china/ or comoros/ or congo/ or cote d'ivoire/ or croatia/ or cuba/ or "democratic republic of the 
congo"/ or cyprus/ or djibouti/ or dominica/ or dominican republic/ or ecuador/ or egypt/ or el 
salvador/ or equatorial guinea/ or eritrea/ or eswatini/ or ethiopia/ or fiji/ or gabon/ or gambia/ 
or "georgia (republic)"/ or ghana/ or grenada/ or guatemala/ or guinea/ or guinea-bissau/ or 
guyana/ or haiti/ or honduras/ or independent state of samoa/ or exp india/ or indian ocean 
islands/ or indochina/ or indonesia/ or iran/ or iraq/ or jamaica/ or jordan/ or kazakhstan/ or 
kenya/ or kosovo/ or kuwait/ or kyrgyzstan/ or laos/ or lebanon/ or liechtenstein/ or lesotho/ or 
liberia/ or libya/ or madagascar/ or malaysia/ or malawi/ or mali/ or malta/ or mauritania/ or 
mauritius/ or mekong valley/ or melanesia/ or micronesia/ or monaco/ or mongolia/ or 
montenegro/ or morocco/ or mozambique/ or myanmar/ or namibia/ or nepal/ or nicaragua/ or 
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niger/ or nigeria/ or oman/ or pakistan/ or palau/ or exp panama/ or papua new guinea/ or 
paraguay/ or peru/ or philippines/ or qatar/ or "republic of belarus"/ or "republic of north 
macedonia"/ or romania/ or exp russia/ or rwanda/ or "saint kitts and nevis"/ or saint lucia/ or 
"saint vincent and the grenadines"/ or "sao tome and principe"/ or saudi arabia/ or serbia/ or 
sierra leone/ or senegal/ or seychelles/ or singapore/ or somalia/ or south africa/ or south 
sudan/ or sri lanka/ or sudan/ or suriname/ or syria/ or taiwan/ or tajikistan/ or tanzania/ or 
thailand/ or timor-leste/ or togo/ or tonga/ or "trinidad and tobago"/ or tunisia/ or turkmenistan/ 
or uganda/ or ukraine/ or united arab emirates/ or uruguay/ or uzbekistan/ or vanuatu/ or 
venezuela/ or vietnam/ or west indies/ or yemen/ or zambia/ or zimbabwe/ 1291789 
26 "Organisation for Economic Co-Operation and Development"/ 539 
27 australasia/ or exp australia/ or austria/ or baltic states/ or belgium/ or exp canada/ or 
chile/ or colombia/ or costa rica/ or czech republic/ or exp denmark/ or estonia/ or europe/ or 
finland/ or exp france/ or exp germany/ or greece/ or hungary/ or iceland/ or ireland/ or israel/ 
or exp italy/ or exp japan/ or korea/ or latvia/ or lithuania/ or luxembourg/ or mexico/ or 
netherlands/ or new zealand/ or north america/ or exp norway/ or poland/ or portugal/ or exp 
"republic of korea"/ or "scandinavian and nordic countries"/ or slovakia/ or slovenia/ or spain/ 
or sweden/ or switzerland/ or turkey/ or exp united kingdom/ or exp united states/ 3490253 
28 European Union/ 17665 
29 Developed Countries/ 21362 
30 or/26-29 3506177 
31 25 not 30 1202341 
32 24 not 31 7813 
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